

Digital Nuclear Reactor Initiative

Digital Nuclear Reactor: Goals and current state

SNETP Virtual Forum - 04/02/2021 Chaï Koren - EDF R&D

DIGITAL NUCLEAR REACTOR INITIATIVE

- An initiative which transformed into a 4 year project (2020-2023) and combining efforts from 8 partners: <u>EDF</u>, CEA, FRAMATOME, CORYS, ESI, AXONE, BOOST, CNRS-CRAN
- Aiming at providing an advanced Digital Twin comprising:
 - An advanced Multiphysics & Multiscale simulation workbench for nuclear applications
 - A modular and easily configurable Full Scale NPP Simulator
 - Advanced & instructive visualization tools
 - A single digital portal for the three modules and associated services.

DIGITAL NUCLEAR REACTOR INITIATIVE ale YS RÉA

DIGITAL NUCLEAR REACTOR INITIATIVE

- An initiative which transformed into a 4 year project (2020-2023) and combining efforts from 8 partners: <u>EDF</u>, CEA, FRAMATOME, CORYS, ESI, AXONE, BOOST, CNRS-CRAN
- Aiming at providing an advanced Digital Twin comprising:
 - An advanced Multiphysics & Multiscale simulation workbench for nuclear applications
 - A modular and easily configurable Full Scale NPP Simulator
 - Advanced & instructive visualization tools
 - A single digital portal for the three modules and associated services.

COCAGNE, new EDF in house Core code

- Multi-domains cross-section homogenization (including explicit Pin by Pin)
- Simplified transport (SPn n=1,3) and full transport Sn Cartesian flux Solvers
- Micro depletion model with ~50 isotopes using real core power.
- Up to 26 energy groups.

APOLLO3, CEA new neutronics code

- Both lattice and core calculations
- Transport solvers on unstructured meshes
- Parallelization on thousands of nodes
- Depletion chain with more than a thousand isotopes
- Allows advanced calculation such as direct calculation (on going work)

System scale: CATHARE3, a CEA, EDF,

FRAMATOME and IRSN collaboration

Two-phase thermal-hydraulic code used for reactor safety analyses...

Component scale:

THYC, EDF In-house code **FLICA4** developed at CEA

- Single and multiphase flows
- Used for Cores, Steam Generators, Heat exchangers
- Part of the current Multi-physics Core Simulation chain of EDF

CFD scale: NEPTUNE_CFD, a EDF, CEA, FRAMATOME and IRSN collaboration

- Multiphase-flows solver: freesurface flows, boiling flows, bubbly flows...
- Dedicated models are available to simulate regime transitions of two-phase flows.

- ☐ Preprocessing tools : CAO modeler, Meshing
- ☐ Proven capabilities of code integration & coupling, including simulation codes approved by french regulator (ASN) as well as external codes

- ☐ Preprocessing tools : CAO modeler, Meshing
- ☐ Proven capabilities of code integration & coupling, including simulation codes approved by french regulator (ASN) as well as external codes
- ☐ Numerous tools: Jobs distribution, parametrical studies, data coupling, mesh interpolation, ...
- ☐ Advanced postprocessing tools

- ☐ Modular structure : Each code is welcome « as is », including binaries
 - ☐ Helping ensure same behavior within the workbench as outside of the bench
- ☐ Codes can be sequential or parallelized

- ☐ Modular structure : Each code is welcome « as is », including binaries
 - ☐ Helping ensure same behavior within the workbench as outside of the bench
- ☐ Codes can be sequential or parallelized
- ☐ Multiphysics & Multiscale coupling achieved thanks to an interoperability standard which requires :
 - ☐ A python interface (« **driver** ») using a specified API (list of methods)
 - ☐ Capacity to write data using **MED** format or in a serialized manner
- ☐ A set of drivers can then be easily:
 - ☐ combined to couple codes using a pre-defined algorithme (strong/weak coupling)
 - ☐ Create a new driver which handle a multiphysics or mutliscale coupling as a new standalone « code »

Ex 1 : Code – Code coupling

Based on the SALOME open-source numerical platform (EDF/CEA):

- ☐ Modular structure : Each code is welcome « as is », including binaries
 - ☐ Helping ensure same behavior within the workbench as outside of the bench
- ☐ Codes can be sequential or parallelized
- ☐ Multiphysics & Multiscale coupling achieved thanks to an interoperability standard which requires :
 - ☐ A python interface (« **driver** ») using a specified API (list of methods)
 - ☐ Capacity to write data using **MED** format or in a serialized manner
- ☐ A set of drivers can then be easily:
 - ☐ combined to couple codes using a pre-defined algorithme (strong/weak coupling)
 - ☐ Create a new driver which handle a multiphysics or mutliscale coupling as a new standalone

« code »

Ex 1: Code - Code coupling

Ex 2 : Code – Macro Driver coupling

Based on the SALOME open-source numerical platform (EDF/CEA):

- ☐ Modular structure : Each code is welcome « as is », including binaries
 - ☐ Helping ensure same behavior within the workbench as outside of the bench
- ☐ Codes can be sequential or parallelized
- ☐ Multiphysics & Multiscale coupling achieved thanks to an interoperability standard which requires :
 - ☐ A python interface (« **driver** ») using a specified API (list of methods)
 - ☐ Capacity to write data using **MED** format or in a serialized manner
- ☐ A set of drivers can then be easily:
 - ☐ combined to couple codes using a pre-defined algorithme (strong/weak coupling)
 - ☐ Create a new driver which handle a multiphysics or mutliscale coupling as a new standalone

« code »

Ex 1: Code - Code coupling

Ex 2 : Code – Macro Driver coupling

Full Scale workbench : ALICES platform

- ☐ A digital platform which can use international standards (such as FMI) for a Plug'N'Play module integration
- ☐ A complete set of tools to handle a full-scope simulation of a nuclear reactor

Full Scale workbench : ALICES platform

- □ A digital platform which can use international standards (such as FMI) for a Plug'N'Play module integration
- ☐ A complete set of tools to handle a full-scope simulation of a nuclear reactor

- ☐ A platform which can:
 - ☐ Act as the backbone of Control Room simulators used for opeartors training
 - Be used to simulate an entire reactor while taking into account tens of systems and subsystems
 - ☐ Be used for design and optimization studies

From advanced simulation to Full Scale simulators

Advanced simulation workbench

Integration using FMI Standard (FMU module)

Full Scale NPP Simulator

- Operators training
- Driver assistance systems
- Operations studies

From advanced simulation to Full Scale simulators

Advanced simulation workbench

Integration using FMI Standard (FMU module)

Option 1:

Integrate a code « as is » using the FMI standard. Possible for codes which can attain real-time simulation or faster.

Full Scale NPP Simulator

- Operators training
- Driver assistance systems
- · Operations studies

From advanced simulation to Full Scale simulators

Advanced simulation workbench

Integration using FMI Standard (FMU module)

Option 1:

Integrate a code « as is » using the FMI standard. Possible for codes which can attain real-time simulation or faster.

Option 2:

Generate reduced order models for codes which cannot attain Real Time Simulation (CFD for example)

Full Scale NPP Simulator

- Operators training
- Driver assistance systems
- · Operations studies

Full Scale Simulator: Instructive visualization

Questions?

