

Innovation on concrete

Miguel Ferreira and Edgar Bohner VTT Technical Research Centre of Finland Ltd

Outline

- What is driving concrete innovation?
- Novel material solutions for concrete
 - New cement chemistries
 - Alternative aggregates
- Special concretes
- Concrete technology Digitalization
- Concrete construction
- Improved understanding of concrete ageing
- Concrete related EURATOM project ACES
- Final remarks

What is concrete?

- Concrete is most used manmade material in the world
 - More than 7 billion m³ of concrete are produced every year
 - ≈ 4.1 Gt of cement/year [1] and 4.7 Gt of cement/year by 2050 [2]
- Why use concrete?
 - It's mechanical properties, versatility, ease of production, worldwide availability, cost

- Production of 4.1 Gt of cement/year worldwide → 3.8 Gt of CO₂ released –
 ≈ 8% of CO₂ emissions worldwide ^[3] (very energy intensive)
- The Circularity problem decoupling the development from consumption of finite resources
- Durability of existing (and new) concrete structures

What is driving concrete innovation?

- Legislation & Policy
 - Advancing the policies of Sustainable Development Carbon neutrality (carbon-neutral concrete by 2050 pledge [1]), Circular Economy, etc.
- Improved safety & quality of concrete structures
 - Digitalisation of materials/process, automated quality control, structural health monitoring, non-destructive testing, ...
- Increase sustainability lower carbon footprint
 - Decarbonizing roadmaps, Portland cement replacements
- Address scarcity of (non-renewable) resources
 - Increase circularity (e.g. recycled aggregates), upcycling, use of industry waste, etc.
- Company ethics/strategy and economics
 - · Zero waste concepts, monetization of mineral side streams/waste
 - Marketing, PR

Novel material solutions for concrete

- New binder chemistry [1]:
 - Extending the use of SCMs in cement to further reduce Portland clinker content – combined addition of calcined clay, limestone, biomass ashes and natural pozzolan
 - SCMs from 15-25% → 50%; Fillers from 6% → how much?
 - E.g.: LC³ has lower creep and delay in shrinkage strains compared to plain cement, resisting chloride ingress and expansion from ASR is outstanding [2]
 - Belite-ye'elimite-ferrite (BYF) is a Non-Portland clinker presents substantial CO₂ reductions relative to Portland clinker (but has higher raw materials costs)
 - Alkali-activated binders (AAM) potential zero-cement composite
 - Requires e.g. BFS but global supplies are limited (as conventional SCMs)

Novel material solutions for concrete

Alternative aggregates:

- Recycled aggregate from concrete demolition Upgraded use, smart crushing [1]
- Use of other waste materials as replacement of aggregate (slag granules, plastic, agroindustry, etc.)
- Manufacturing artificial aggregates from clay or other mineral deposits (e.g. bottom ash, mining tailings)

Circular economy: how to promote circularity?

- Reuse of aggregates well known, but reuse of binders would be big step towards lower CO₂ emissions and industry circularity separate binder/sand/ rock aggregates for high quality reuse
- Reuse aspects design for disassembly, integration of design information and service life engineering through digital technologies (tracking/tracing)
- Process demolition waste promote the carbonation of concrete waste

Special concretes

- Self-healing concrete [1] using microcapsules containing 'healing' agents such as calcium carbonate forming bacteria, super absorption polymers, epoxy, polyurethane, etc.

 which can be added to building materials to allow self-repair of small cracks which develop over time
- Self-sensing concrete [2] ability to sense such conditions as stress, strain, cracking and damage, temperature/relative humidity, and store electrical charge functional fillers (carbon fibre, steel fibre, carbon nanotube, nickel powder, polymer composites, etc.)
- CO₂ capture [3, 4] based on CO₂ mineralization conversion of gaseous CO₂ into solid mineral carbonates (e.g., CaCO₃) within the concrete products reducing CO₂ footprint
- **Engineered living materials** [5] microbes to build inert structural materials desired properties usually found in biological systems: self-power, self-heal, response to biosignals, etc.

Concrete technology - Digitalization

Concrete construction

SC modular construction

- Continuous steel plates are used on the surfaces of concrete walls/slabs, having both the roles of formwork and tensile reinforcement
- Used in key buildings, to achieve higher levels of prefabrication and economy (time & money)
- Several elements of the AP1000 plant design high potential for SMR design

Additive manufacturing (3DP)

- Concrete deposited by 3D printer layer by layer without any formwork support and vibration process
- Previous studies have shown that construction with 3DP technology can reduce 30–60% of construction wastes, 50–80% of labour costs and 50–70% of production time [1]

Improved understanding of concrete ageing

- Research focused on "concrete ageing" knowledge gaps, e.g.:
 - Effect of radiation (neutron & gamma) on concrete properties
 - Internal swelling reactions, creep & shrinkage of containment, embedded liner corrosion
- Integrated structural health monitoring systems, that include:
 - Monitoring (e.g. wireless technology), integrated data collection
 - Decision making tools (machine learning/Al data analysis)
- Effective NDE of concrete for unique NPP structural typologies
- Holistic ageing management systems
 - Proactive system that includes planning and monitoring activities during each of the phases in the life of NPP: design, construction, operation (maintenance, inspection and intervention), and demolition/decommissioning.

Concrete related EURATOM project – ACES

■ Towards improved Assessment of Safety Performance for LTO of nuclear Civil Engineering Structures (ACES)

- Participants: Consortium of 11 partners from 7 countries
- **Duration**: 4 years (September 2020 August 2024)
- Budget: 5.4 M€ total, of which EC contribution of 3.99 M€
- Reply to: Euratom NFRP 1: Ageing phenomena of components and structures and operational issues (RIA)
- **Objective:** Advance the assessment of safety performance of NPP safety-critical concrete infrastructure by addressing remaining scientific and technology gaps for safe and LTO
- End User Group Seminar (public event) 3 March 2021

Register at: https://www.lyyti.in/ACES_End_User_Seminar_030321

ACES

Final remarks

- Currently no clear alternative to structural concrete for new NPPs
- There is innovation industry support and commitment needed for uptake
- Need for alternative cement and concrete chemistries including carbon use innovations in the cement, concrete and aggregate value chain
- Uptake of innovations enabling better recycling/reuse of both cement and concrete (upcycling vs. downcycling)
- Need for digital technologies across entire concrete process chain (construction to demolition) → close to error free construction and QC processes
- Development of new construction methodologies/typologies that enhance the economy of the construction process.

bey^Ond the obvious

Miguel Ferreira & Edgar Bohner miguel.ferreira@vtt.fi & edgar.bohner@vtt.fi +358 401 380 546 & +358 401 969 081