

Ignalina NPP, Lithuania

Ignalina NPP Decommissioning Key Projects and Issues

SNETP Forum 2021, 4 February

Decommissioning of Ignalina NPP is co-financed by the European Union

INPP decommissioning: background information

INPP New Waste Treatment Facilities

D&D key projects

New project: Reactor dismantling and graphite storage (focus on optioneering study)

Ignalina NPP - Design and operation

Location: Far north-east corner of Lithuania. Immediately bordering Latvia and Belarus

Design: 2 × RBMK-1500 water-cooled, graphite-moderated channel-type power reactors

Capacity: Intended to supply NW region of former USSR (not Lithuania). After independence, one unit could produce 80% of Lithuanian electricity demand

Operation:

Unit 1 commissioned Dec 1983 / closed Dec 2004 Unit 2 commissioned Aug 1987 / closed Dec 2009

Ignalina NPP

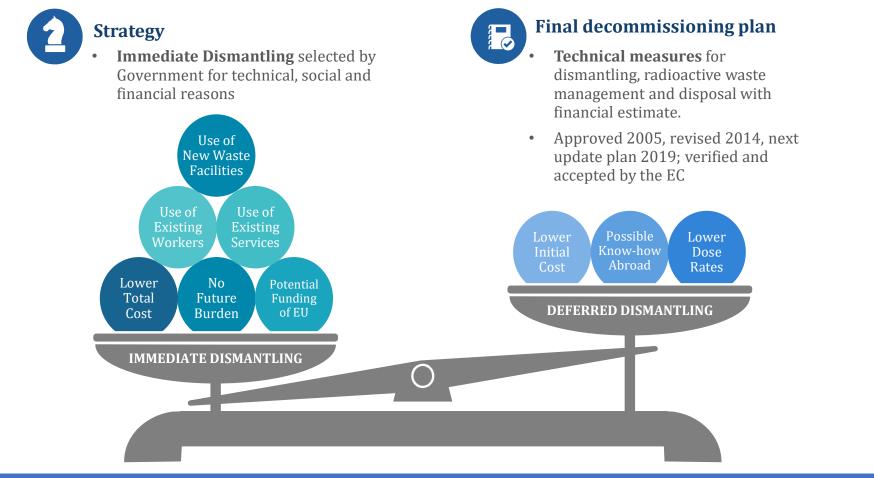
Ignalina NPP - Design and operation

Early closure: Required to facilitate EU accession due to safety concerns. **First decommissioning of RBMK-type NPP**

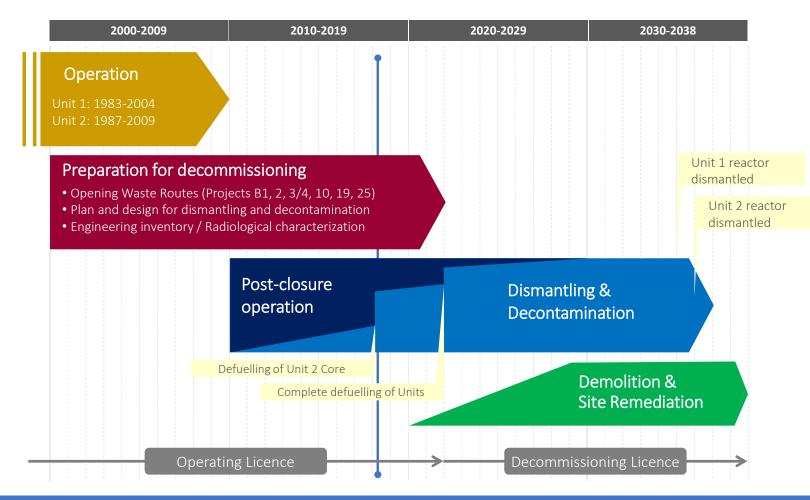
Progress: Planning started in **2001**. Investment projects to open waste-routes started in **2003**. Dismantling started in **2010** (Unit 1) and **2014** (Unit 2)

Licensing: Plant is still licensed as "**operating**" because of nuclear fuel in the units. Preparation for decommissioning license obtaining is ongoing

Scheduleandcost:Completionbyend2038Cost approx.3.4 billion euro (with 3% inflation and risks)

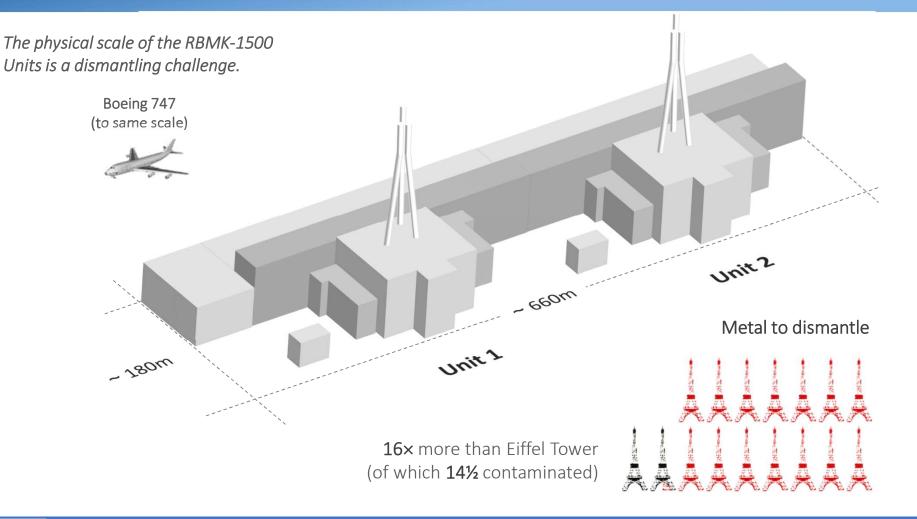


Staffing: A key factor in immediate dismantling that is being implemented using **INPP's own resources**. INPP by far the main employer in the region


Ignalina NPP - Strategy and plan

Ignalina NPP Decommissioning Plan

Ignalina NPP Decommissioning Programme

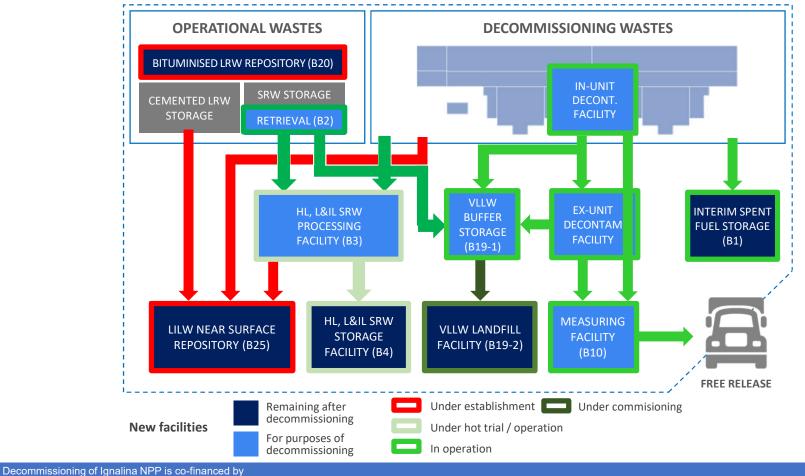


Stored Operational Waste (legacy)	Solid Waste A B C Bituminized Waste B Cemented Waste C	27,000 m ³ 14,000 m ³ 4,000 m ³		Waste classification Free Release Waste Short-lived Low Level and Intermediate Level Waste: Very Low Level Waste (<0,5 mSv/h)
Decommissioning Waste from Technological equipment D&D	Technological equipment (Steel)	ABC	160,000 t	 B Low Level Waste (0,5-2 mSv/h) C Intermediate Level Waste (>2 mSv/h) Long-lived Low Level and Intermediate Level Waste:
Decommissioning Waste from Reactor D&D	Steel A C D E 12,170 t. Graphite D 3,800 t. 3,800 t. Fillers A C 11,940 t.	E		 D Low Level Waste (<10 mSv/h) E Intermediate Level Waste (>10 mSv/h)
Decommissioning Waste from Buildings demolishing	Concrete 0 A B Steel 0 A		900,000 m ³ 200,000 t.	
Spent nuclear fuel	Fuel Assemblies 21,571	item		

1.0

Scale of Dismantling

Ignalina NPP Decommissioning Programme



INPP New Waste Treatment Facilities

Ignalina NPP Opening waste routes

Ignalina NPP New Waste Facilities

All new waste interim-storage or disposal facilities to be created on, adjacent to, Ignalina NPP site (radius \approx 1.5m km)

- Simplifies permissions
- Reduces new infrastructure
- Reduces transport
- Facilitates physical protection

Interim Spent Fuel Storage Facility (B1)

- To build an Interim SF Storage Facility, to manufacture and install all related equipment
- To design and manufacture **191** new-type casks with 80% increased capacity for INPP RBMK-1500 type reactor spent fuel (incl. damaged SF)
- To develop the technologies for casks loading and transportation to ISFSF and install it

Results:

- Start of Hot Trial with 10 casks 26 September 2016
- Start of industrial operation 5 May 2017
- Reactor Unit 2 defueling 28 February 2018
- SPH Unit 1 defueling Intact SF 2020
- 169 casks loaded to date
- Damaged SF loading is proceeding at Unit 1

Next steps:

- SPH Unit 2 defueling Intact SF 2021
- SPH Unit 1,2 defueling completion, incl. damaged SF 2022

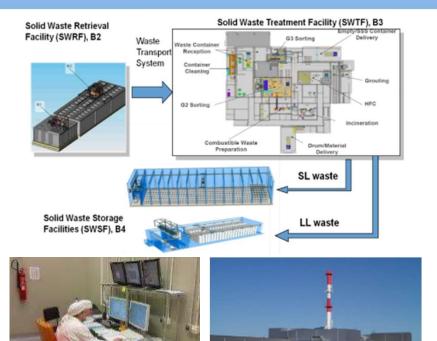
CONSTOR®RBMK1500/M2 cask Capacity: 91 assemblies Diameter: 2.63 m Empty cask weight: 91 t

Solid Waste Management & Storage Facilities (B2/3/4)

Objectives:

- To build facility for treatment of solid operational and radioactive waste from dismantling, comprising:
 - B2 Retrieval Facility (retrieval from existing interim storages and transportation to B3)
 - B3 Processing Facility (sorting and treatment before transportation to B4)
 - B4 Storage Facilities (for long and short lived waste)

Results for B2:


- Start of hot-trials 9 June 2017
- Finish of hot-trials October, 2018
- ٠ Start of Industrial operation – April 2019

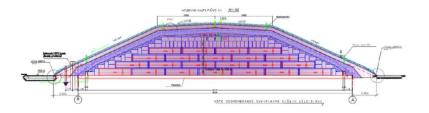
Results for B3/4:

Operational License and start of hot-trials – 13 October 2017 •

Next steps:

License for Industrial operation of B3/4

New Very Low Level Short Lived Waste Storage Facility (B19)



Objective:

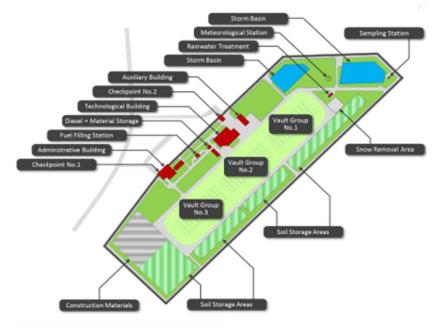
- Construction of Landfill type disposal modules for SL VLL waste 60,000 m3 arising from:
 - Operational waste retrieved from B2
 - Units 1 and 2 dismantling

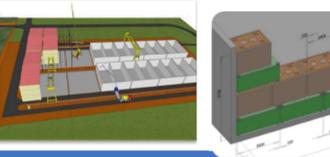
Key dates:

- Landfill Buffer storage facility in operation since 2013
- The contract for construction works signed on 29 June 2017
- Construction completion December 2020

Near Surface Repository for Low and Intermediate Level Short-lived Radioactive Waste (B25)

Objectives:


- Construction of Near Surface Repository for 100 000 m3 Low and Intermediate Level Short-lived Radioactive Waste arising from:
 - ✓ Operational solid waste retrieved from B2
 - ✓ Operational cemented liquid waste
 - ✓ Units 1 and 2 dismantling
- After its closure the surveillance of the repository will be carried out for at least 300 years

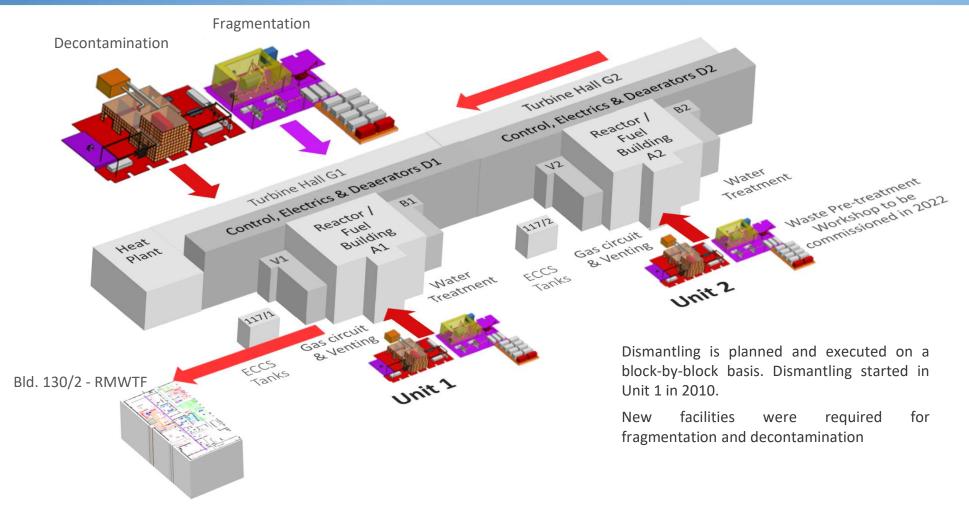

Key dates:

- Technical Design and PSAR completed and agreed with state institutions May 2017
- Construction Permit May 2017
- VATESI Licence for Construction and Operation November 2017

Next steps:

• Tender procedures, contract to be signed in March / April 2021

D&D key projects and issues



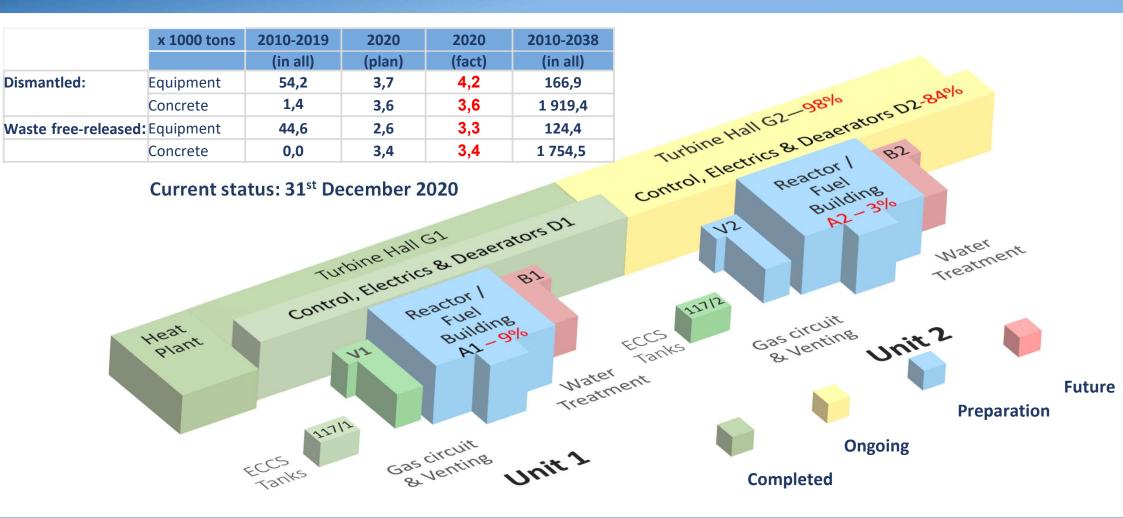
Progress in decontamination and dismantling projects

D&D key projects and issues Ignalina NPP approach for D&D

General information. The D&D methods that currently using at INPP.

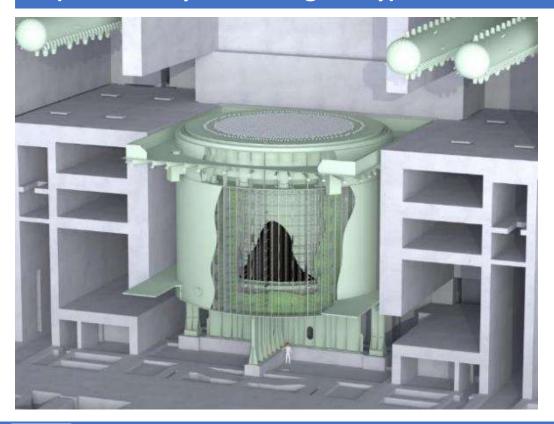
Cutting methods:

- Hot cutting plasma cutting, acetylene oxygen cutting.
- Cold cutting band saws, electric hand saws, electric and hydraulic shears, etc.



Decontamination methods:

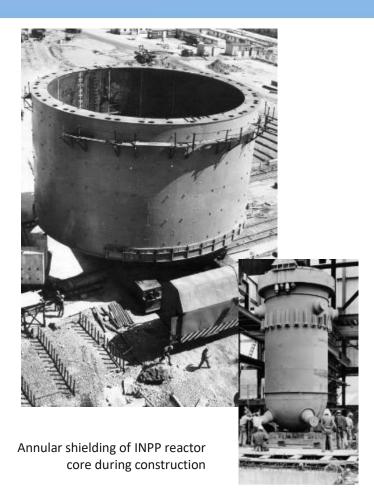
- physical (mechanical) techniques such as blasting, jetting, wiping, brushing, etc
- ultrasonic techniques
- chemical techniques


Overview of current status of INPP decommissioning

D&D key projects and issues Reactor core dismantling

New project: Reactor dismantling and graphite storage (focus on optioneering study)

D&D key projects and issues Reactor core dismantling

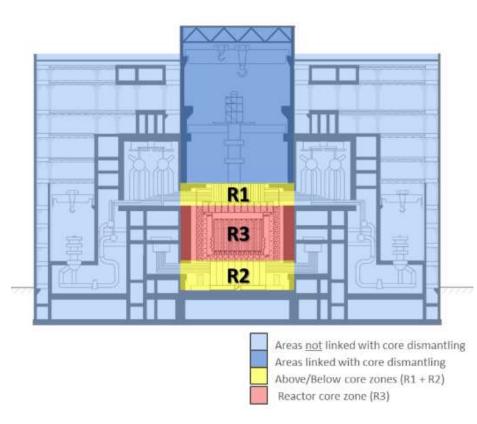

Challenges: Reactor dismantling for an RBMK is completely unlike corresponding activity for a pressurised water reactor (PWR/VVER):

VVER-440	RBMK-1500	
Reactor vessel is factory-	All structures fabricated on	
built structure. Can be	site and internal	
manipulated as a single	components (graphite)	
component.	assembled <i>in situ</i> .	
Dimensions	Dimensions	
Ø 4.3 x 11.8 m	Ø 21 x 25 m	
Mass	Mass	
2,660 tons	17,100 tons	
(steel)	(various materials)	

Closest equivalents to RBMK are Magnox/AGR (UK: Italy, Japan) and UNGG (France: Spain), but limited decommissioning experience.

In excess of 250.000t of irradiated graphite world-wide - 3.400 t at Ignalina NPP

D&D key projects and issues Reactor core dismantling


R3 reactor core dismantling is the key project for INPP decommissioning critical pass

Name of Project:

Units 1 and 2 Reactor Facility Dismantling in area R3 (UP01/R3)

Project objective:

- to develop the dismantling technologies for structures and equipment from INPP Units reactor shaft (in the R3 area);
- to develop the technologies for radioactive waste management generated as a result of both units graphite stacks dismantling;
- to dismantle the reactor structures and equipment from INPP Units reactor shaft applying the developed technologies.

SE Ignalina Nuclear Power Plant

Drūkšinių km, Visagino sav LT-31500, Lithuania

Phone +370 386 28985 Fax +370 386 24396 E-mail iae@iae.lt

Thank you for attention!

0

Decommissioning of Ignalina NPP is co-financed by the European Union