

IRS INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Contribution of recent R&D programs to hydrogen management improvement

A. Bentaïb¹, N. Chaumeix²

¹ Institut de Radioprotection et de sûreté nucléaire, BP 17, 92262Fontenay Aux Roses, France ²CNRS-ICARE, UPR 3021, 1C, avenue de la recherche scientifique, 45071 Orléans Cedex 2, France

Severe accident and hydrogen explosion in NPP

Three Mile Island Nuclear Power Plant

Hydrogen explosion during Fukushima accident

cnrs **IRS**

Hydrogen risk mitigation strategies

H2 control system implementation

Combustion

- Flammable mixture conditions
- Potential Ignition sources
- Characterization of flame propagation from early stage to accelerate regime
- Perspectives:
 - Hydrogen monitoring system development
 - Enhancement of SAMG

5/40

identification of flammable mixtures

H₂/Air flammability limits – quiescent conditions, Spherical bomb method at ICARE CNRS

K. N'Guessan, A. Commandini, M. Idir, J. Pavageau, T. Cuvillier, N. Chaumeix, Evaluation of flammability limits of H₂/O₂ mixtures in conditions relevant to nuclear waste transportation: Pressure and nitrogen effects, ICDERS 2017, Paper 1032, 2017

H₂/Air flammability limits – quiescent conditions

Cheikhravat, H., Chaumeix, N., Bentaib, A., Paillard, C.-E., Flammability limits of hydrogen-Air mixtures, Nuclear Technology 178 (1), 2012, p. 5-16

H₂/Air/H₂O_{vap} flammability limits – quiescent conditions

Cheikhravat, H., Chaumeix, N., Bentaib, A., Paillard, C.-E., Flammability limits of hydrogen-Air mixtures, Nuclear Technology 178 (1), 2012, p. 5-16

Question :

" if there is a certain gas motion in the vessel which can be represented by a given turbulence level, will it significantly affect the lower flammability limit?"

Flammability limits-turbulent conditions

Spherical bomb method at ICARE-CNRS

FLAMMABILITY LIMIT: initial turbulence effect

Goulier J., Chaumeix N., Meynet N. & Bentaïb A., Hydrogen Safety: Laminar and Turbulent Flame Speed of Spherical Flame in a Fanned-Stirred Closed Vessel, The 16th International Topical Meeting on Nuclear Reactor Thermal-hydraulics (NURETH-16), Chicago, Illinois, USA, 30 août au 4 septembre 2015

CNrS

Question :

"In case of spray actuation, could we ignite gaswater droplets mixture and what could be the effect of spray on flammability limit?"

Spray flame interaction: Summary of PhD thesis

Could we ignite a gas-water droplet mixture ?

Step 1:

Flammability Limits of H₂/air + Mist of liquid Water (droplets)

Step 2:

Initial non-combustible mixture of $H_2/air/H_2O_{vap}$

Activation of Water Spray

Spark ignition activation

13/40

Results step 1 : Influence of water mist on flammability limits

H. Cheikhravat, J. Goulier, A. Bentaib, N. Meynet, N. Chaumeix, C.-E. Paillard, Effects of water sprays on flame propagation in hydrogen/air/steam mixtures, Proceedings of the Combustion Institute, Volume 35, Issue 3, 2015, Pages 2715-2722

Results step 2 : Mixture made flammable

by water spray

T = 383 K - P = 1 bar XH₂O = 0.55, XH₂ = 0.15, Xair = 0.30 SMD = 75 μ m

Domain of mixtures potentially ignitable by cooling from the spray

H. Cheikhravat, J. Goulier, A. Bentaib, N. Meynet, N. Chaumeix, C.-E. Paillard, Effects of water sprays on flame propagation in hydrogen/air/steam mixtures, Proceedings of the Combustion Institute, Volume 35, Issue 3, 2015, Pages 2715-2722

Flame propagation regimes

Flame acceleration (turbulence, instabilities...)

Transition from Deflagration to detonation regimes

TURBULENT COMBUSTION REGIME

GOULIER J., CHAUMEIX N., MEYNET N. & BENTAIB A., Hydrogen Safety: Laminar and Turbulent Flame Speed of Spherical Flame in a Fanned-Stirred Closed Vessel, The 16th International Topical Meeting on Nuclear Reactor Thermal-hydraulics (NURETH-16), Chicago, Illinois, USA, 30 août au 4 septembre 2015

On going Work

French National Program MITHYGENE

New Facility (8m high, 230 mm i.d.) $T_{ini} = 20 - 150^{\circ}C$; $P_{ini} = 1$ to 3 bar Pmax @ 20°C = 240 bar

Highly instrumented to investigate

- Flame speed, High speed Imaging
- Flow velocity induced by the flame (HS-PI\
- Effect of water vapor/spray
- Initial T & P relevant to severe accidents

edf

CORTS | R S N

flame acceleration & flame-choc interaction

Towards the reactor application

20/40

PAR and flame behavior in Ex-vessel conditions SAMHYCO-NET PROJECT (2017-2020)

Academic: ICARE, University Shanghai, NUT, UCSN Research Institutes, TSO, Safety Authorities: IRSN, CEA, CIEMAT, LEI, SSTC-NRS, KAERI, KINS, PSI, IJS, NRG, JULICH, KIT, CNSC, JAEA, INRNE, SEC-NRS, SNERDI, CNL Industrials: General Electric, EDF, AIR LIQUIDE, FRAMATOME

Main objectives

Objective 1: Review and critical assessment regarding :

- PARs experimental data and modeling
- H₂ and CO combustion experimental data and modeling

Objective 2: Experimental and analytical investigation of PARs behavior under ex-vessel conditions including the combined effect of oxygen starvation, steam, carbon monoxide and iodine

Objective 3: Experimental and analytical investigation of $H_2/CO/H_2O$ combustion under representative ex-vessel conditions

Objective 4: Improving the predictability of the numerical tools used for explosion hazard evaluation inside the reactor containment

Conclusion

Flammable mixtures identification

- PARs ignition limits identification
- Flame propagation characterization
 - Assessment of the self-acceleration flame due to thermo-diffusive instabilities
 - Flame acceleration to initial turbulence
- Improvement of combustion modeling based on new well instrumented data
- Application to reactor Scale
- Perspectives

AMHYCO PROJECT

Enhancing H₂ & CO Combustion Risk Management

AMHYCO project overview

This project has received funding from the European Union's EURATOM Horizon 2020 research and innovation programme grant number: 945057. The content of this document reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

AMHYCO general data

- Full Project Name: Towards An Enhanced Accident Management Of The Hydrogen/CO Combustion Risk
- EURATOM Work Programme 2019 "NFRP-02: Safety assessments for Long Term Operation (LTO) upgrades of Generation II and III reactors"
- Project No: 945057
- Start Date: 01/10/2020
- Project Duration: 48 months
- EU contribution: 3 974 402.50 €

AMHYCO partners

#	Participant organisation name	Country
1	Universidad Politécnica de Madrid (UPM)	Spain
(Coordi		
nator)		
2	Centro de Investigaciones Energéticas, Medioambientales y	Spain
	Tecnológicas (CIEMAT)	
3	L'Institut de Radioprotection et de Sûreté Nucléaire (IRSN)	France
4	Centre National de la Recherche Scientifique -Orleans	France
	(CNRS)	
5	Forschungszentrum Jülich (FZJ)	Germany
6	Framatome GmbH (FRG)	Germany
7	Ruhr-Universität Bochum (RUB)	Germany
8	Jožef Stefan Institute (JSI)	Slovenia
9	Energorisk, Ltd. (ER)	Ukraine
10	Nuclear Research and Consultancy Group (NRG)	Netherlan
		ds
11	Canadian Nuclear Laboratories (CNL)	Canada
12	LGI Consulting (LGI)	France

AMHYC

CNRS I R S N²⁶

AMHYCO objectives

The AMHYCO project main objective is to propose innovative enhancements on the way combustible gases are managed in case of a severe accident in currently operating reactors.

To reach this main objective, the AMHYCO project has three main specific objectives:

Objective 1: To experimentally investigate phenomena that are difficult to predict theoretically: H2/CO combustion and PARs (Passive Autocatalytic Recombiners) behavior under realistic accidental conditions, taking into account their interaction with safety systems. Reducing the uncertainties in the phenomena is a remarkable way of enhancing the severe accident safety.

Objective 2: To improve the predictability of analysis tools - Lumped Parameter (LP), 3D and Computational Fluid Dynamic (CFD) codes - used for explosion hazard evaluation inside the reactor containment and providing support to SAMGs design and development.

Objective 3: To improve the Severe Accident Management Guidelines for both invessel and ex-vessel phases with respect to combustible gases risk management, using theoretical, simulation and experimental results.

AMHYCO workflow

AMHY

For any questions or further information, please contact:

