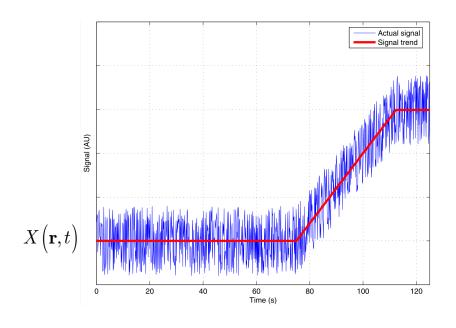


Modelling the effect of stationary perturbations onto the neutron flux in nuclear reactors

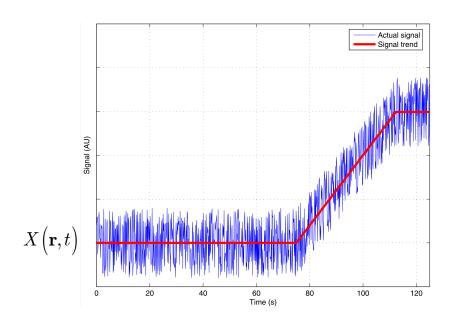
SNETP Forum 2021

February 2-4, 2021, online


Prof. Christophe Demazière, Chalmers University of Technology

demaz@chalmers.se

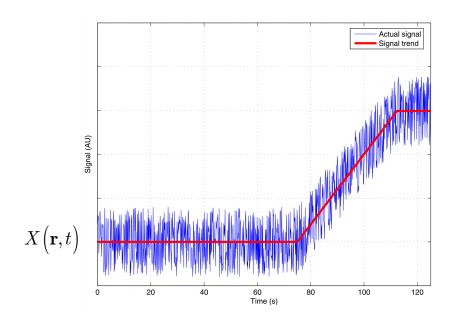
• Fluctuations always existing in dynamical systems even at steady stateconditions:



Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X(\mathbf{r},t) = X_{0}(\mathbf{r},t) + \delta X(\mathbf{r},t)$$

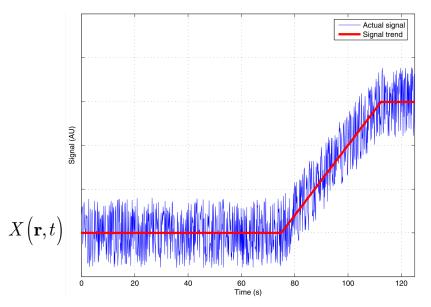
• Fluctuations always existing in dynamical systems even at steady stateconditions:


Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X(\mathbf{r},t) = X_0(\mathbf{r},t) + \delta X(\mathbf{r},t)$$

actual signal

• Fluctuations always existing in dynamical systems even at steady stateconditions:


Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X\left(\mathbf{r},t\right) = \underbrace{X_{0}\left(\mathbf{r},t\right)} + \delta X\left(\mathbf{r},t\right)$$

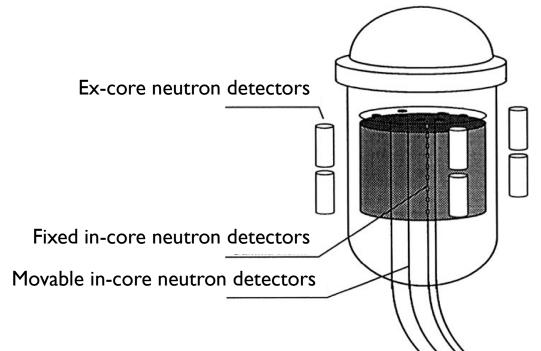
signal trend or mean

• Fluctuations always existing in dynamical systems even at steady state-conditions:

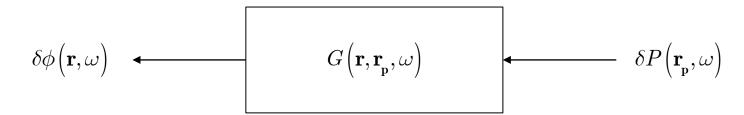
Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X\left(\mathbf{r},t\right)=rac{\mathbf{X}_{0}\left(\mathbf{r},t
ight)+\left(\delta X\left(\mathbf{r},t
ight)
ight)}{\delta X\left(\mathbf{r},t
ight)}$$

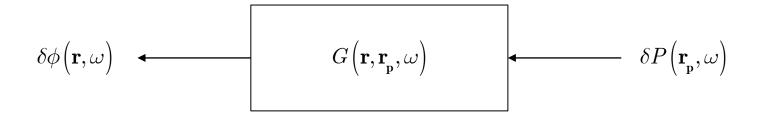
fluctuations or "noise"


Fluctuations carrying some valuable information about the system dynamics

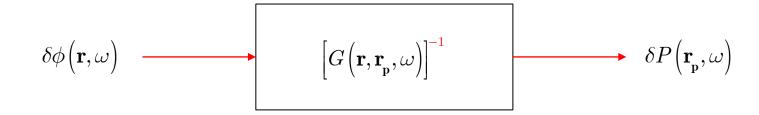
- Fluctuations could be used for "diagnostics", i.e.:
 - Early detection of anomalies
 - Estimation of dynamical system characteristics
 - ... even if the system is operating at steady-state conditions
- Fluctuations in the neutron density in nuclear reactors can be used for core diagnostics and monitoring


• Neutron detectors present both in-core and ex-core:

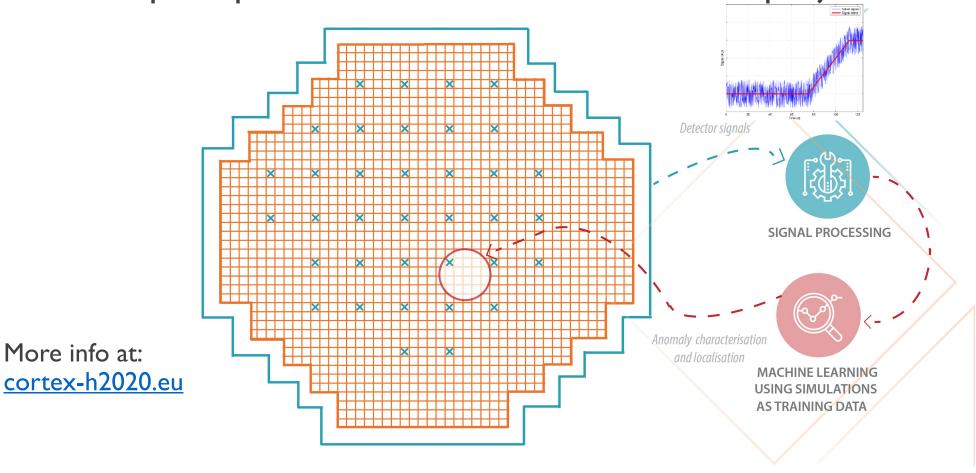
- Advantage: "sense" perturbations even far away from the perturbations
- Disadvantage: western-type reactors do not always contain many in-core neutron detectors



- Neutron noise diagnostics requires establishing relationships between neutron detectors and possible perturbations
- The "reactor transfer function" $G(\mathbf{r}, \mathbf{r}_{\mathbf{p}}, \omega)$ needs to be determined



• But noise diagnostics requires the inversion of the reactor transfer function $G(\mathbf{r}, \mathbf{r}_{\mathbf{p}}, \omega)$


• But noise diagnostics requires the inversion of the reactor transfer function $G(\mathbf{r}, \mathbf{r}_{p}, \omega)$

- ➤ Machine learning could be used for that purpose
- Unfolding possible even if very few detectors available (due to the spatial correlations existing between a localized perturbation and its effect throughout the nuclear core)

Overall principle of the Horizon 2020 CORTEX project:

- Modelling of the neutron noise includes two basic steps:
 - Modelling of the noise source in terms of macroscopic cross-section perturbations
 - Modelling of the neutron noise induced by fluctuations of the macroscopic cross-section perturbations

- Perturbations can be defined:
 - In the time-domain, more or less as they are, with limitations/approximations due to the mesh used.
 - In the frequency-domain, after typically a first-order approximation of the perturbation, subsequently followed by a Fourier transform + limitations/approximations due to the mesh used.
- Modelling possibly supplemented by other modelling tools (e.g. fluid-structure modelling tool)
- Noise source modelling strongly dependent on the choices made by the user

- Different scenarios investigated in CORTEX:
 - "Absorber of variable strength": localized perturbation of which its amplitude varies in time at a fixed position
 - "Vibrating absorber": lateral movement of a weak absorber
 - Axially-travelling perturbations
 - Inlet flow rate perturbations
 - Core barrel vibrations: several types of vibrations possible
 - Fuel assembly vibrations: several possible modes of vibrations

Possible axial vibration modes for fuel assemblies:

	Cantilevered beam	Simply supported on both sides	Cantilevered beam and simply supported	
Axial shape of the displacement $d(z,t)$ in arbitrary	0.95 0.92 0.88 0.64 0.8	0.56 0.92 0.88 0.88	0.96 0.92 0.88 0.84 0.8	
units as a function of the relative core elevation z	0.76 0.72 0.60 0.61 0.66 0.56 0.52 0.41 0.44 0.44 0.36 0.32 0.32 0.37 0.37 0.45 0.46 0.46 0.46 0.46 0.47 0.47 0.48 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49	0.76 0.72 0.68 0.66 0.66 0.6 0.6 0.56 0.57 0.48 0.44 0.1 0.16 0.2 0.20 0.28 0.24 0.24 0.20 0.20 0.20 0.20 0.20 0.20	0.76 0.72 0.68 0.64 0.64 0.6 0.88 0.88 0.88 0.44 0.44 0.4 0.58 0.32 0.24 0.24 0.24 0.24 0.24 0.25 0.32 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.26 0.27 0.28 0.29 0.29 0.29 0.29 0.20 0.20 0.20 0.20	
		first mode in blue, second mode in orange	first mode in blue, second mode in orange	
Oscillation frequency	Ca. 0.6 – 1.2 Hz	Ca. 0.8 – 4 Hz for the first mode	Ca. 0.8 – 4 Hz for the first mode	
		Ca. 5 – 10 Hz for the second mode	Ca. 5 – 10 Hz for the second mode	

- Once the noise source is modelled, need to estimate the response of the neutron flux to the applied perturbation
- Could be done using the neutron transport equation (Boltzmann equation):

$$\begin{split} &\frac{1}{v(E)}\frac{\partial}{\partial t}\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)\\ &=-\mathbf{\Omega}\cdot\boldsymbol{\nabla}\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)-\boldsymbol{\Sigma}_{t}\left(\mathbf{r},E,t\right)\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)\\ &+\int_{\left(4\pi\right)}\int_{0}^{\infty}\boldsymbol{\Sigma}_{s}\left(\mathbf{r},\mathbf{\Omega}'\rightarrow\mathbf{\Omega},E'\rightarrow E,t\right)\psi\left(\mathbf{r},\mathbf{\Omega}',E',t\right)d^{2}\mathbf{\Omega}'dE'\\ &+\frac{1}{4\pi}\int_{-\infty}^{t}\int_{0}^{\infty}\nu\left(E'\right)\boldsymbol{\Sigma}_{f}\left(\mathbf{r},E',t'\right)\phi\left(\mathbf{r},E',t'\right)\left[\left(1-\beta\right)\chi^{p}\left(E\right)\delta\left(t-t'\right)+\sum_{i=1}^{N_{d}}\chi_{i}^{d}\left(E\right)\lambda_{i}\beta_{i}e^{-\lambda_{i}\left(t-t'\right)}\right]dt'dE' \end{split}$$

- Different approaches possible:
 - Time-domain modelling

Advantages:

- Existing time-domain codes could be used
- Non-linear effects inherently accounted for
- Thermal-hydraulic feedback automatically taken into account

Disadvantages:

- Lengthy calculations
- Challenging to get a highly accurate solution for the noise
- Codes originally not developed for that purpose
- Lack of verification and validation for noise analyses

- Different approaches possible:
 - Frequency-domain modelling

Time-domain equations transformed into frequency-domain equations according to the following procedure:

- Splitting between mean values and fluctuations
- Linear theory used because of the smallness of the fluctuations
- Fourier-transform of the balance equations for the dynamical part only

- Different approaches possible:
 - Frequency-domain modelling

Advantages:

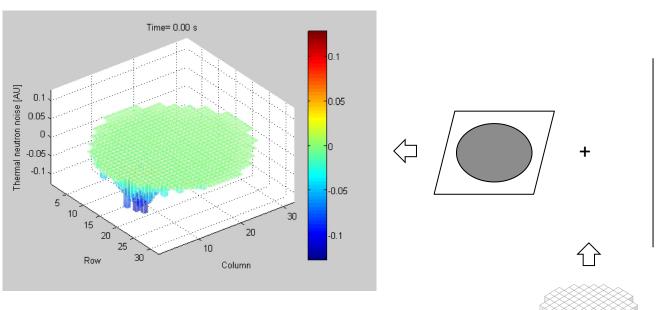
- Codes specifically developed for noise analysis, thus usually fully verified (validated?)
- Highly accurate noise solution
- Usually high flexibility in the modelling
- Very fast calculations

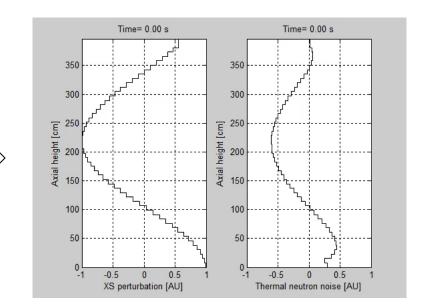
Disadvantages:

- No commercial code available
- Possible linear effects disregarded
- Thermal-hydraulic feedback generally not taken into account (but could be)

Codes used in CORTEX:

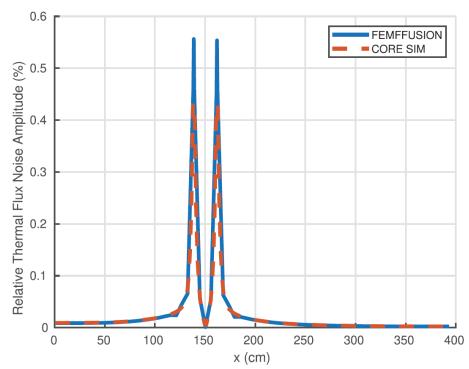
Code name	Dor	main	Non-line	ar terms	Angular r	resolution	Spatial re	esolution	Appr	roach
	Time	Frequency	Not modelled	Modelled	Diffusion	Transport	Fine-mesh	Coarse-mesh	Deterministic	Probabilistic
SIMULATE-3K	✓			✓	✓			✓	✓	
DYN3D	\checkmark			✓		✓		✓	✓	
QUABBOX/ CUBBOX	✓			✓	✓			✓	✓	
PARCS	\checkmark			✓	\checkmark	(✓)		✓	✓	
FEMFUSSION	✓	✓		✓	✓		✓		✓	
APOLLO3®	✓			\checkmark		✓	✓		\checkmark	

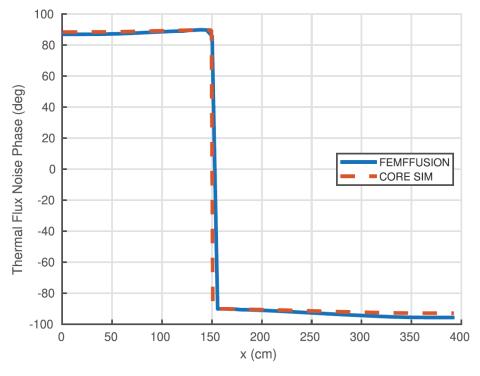



Codes used in CORTEX:

Code name	Don	nain	Non-line	ar terms	Angular r	esolution	Spatial re	esolution	Appr	oach
	Time	Frequency	Not modelled	Modelled	Diffusion	Transport	Fine-mesh	Coarse-mesh	Deterministic	Probabilistic
CORE SIM		✓	✓		✓			✓	✓	
CORE SIM+		✓	✓		✓		✓		✓	
Sn-based solver		✓	✓			✓	✓		✓	
Extension of MCNP		✓	✓			✓	✓			✓
Extension of TRIPOLI-4®		✓	✓			✓	✓			✓
Equivalence- based method using MCNP		✓	✓			✓		✓		√

• Example of a travelling perturbation @ IHz

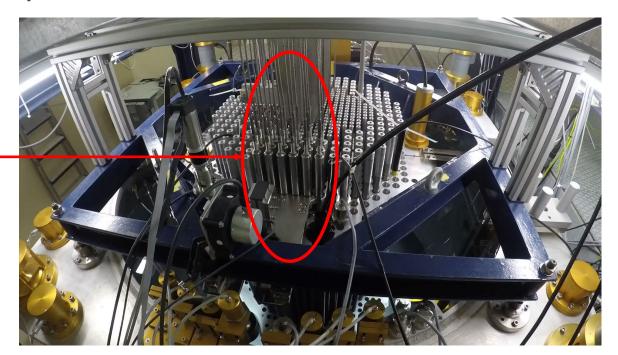




• Example of comparisons between frequency- and time-domain approaches:

- Modelling the effect of noise sources can be done in many ways:
 - Time-domain/frequency-domain
 - Diffusion/transport
 - Deterministic/probabilistic
 - Fine/coarse spatial mesh

- Taking full advantage of noise analysis requires:
 - A correct modelling of the noise source
 - The estimation of the reactor transfer function
 - Its inversion



- Extensive verification/validation work (still on-going):
 - By cross-comparisons of the tools in numerical benchmarks
 - Using noise experiments carried out at the AKR-2 and CROCUS reactors

Oscillating fuel rods

- Extensive verification/validation work (still on-going):
 - By cross-comparisons of the tools in numerical benchmarks
 - Using noise experiments carried out at the AKR-2 and CROCUS reactors

COLIBRI experiments in CROCUS (© EPFL, Switzerland)

Modelling the effect of stationary perturbations onto the neutron flux in nuclear reactors

SNETP Forum 2021

February 2-4, 2021, online

Prof. Christophe Demazière, Chalmers University of Technology

demaz@chalmers.se

