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Introduction and background

* Fluctuations always existing in dynamical systems even at steady state-
conditions:

‘ Conceptual illustration of the possible time-
Ll dependence of a measured signal from a
dynamical system
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* Fluctuations always existing in dynamical systems even at steady state-conditions:

‘ Conceptual illustration of the possible time-
Ll dependence of a measured signal from a
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»Fluctuations carrying some valuable information about the system dynamics




Introduction and background

* Fluctuations could be used for “diagnostics”, i.e.:

* Early detection of anomalies

* Estimation of dynamical system characteristics
... even if the system is operating at steady-state conditions

» Fluctuations in the neutron density in nuclear reactors can be used
for core diagnostics and monitoring




Introduction and background

* Neutron detectors present both in-core and ex-core:

Ex-core neutron detectors — ]

Fixed in-core neutron detectors

-

Movable in-core neutron detectors

» Advantage:“sense” perturbations even far away fron the perturbations
» Disadvantage: western-type reactors do not always contain many in-core neutron detectors




Introduction and background

* Neutron noise diagnostics requires establishing relationships between
neutron detectors and possible perturbations

» The “reactor transfer function” ¢(rr,«) needs to be determined

O (r, w) “ G (r, r, w) “ OP (rp, w)
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* But noise diagnostics requires the inversion of the reactor transfer
function ¢(rr w)

O (r, w) “ G (r, r, w) “ OP (rp, w)




Introduction and background

* But noise diagnostics requires the inversion of the reactor transfer
function ¢(rr w)
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»Machine learning could be used for that purpose

» Unfolding possible even if very few detectors available (due to the spatial
correlations existing between a localized perturbation and its effect throughout the nuclear core)
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* Overall principle of the Horizon 2020 CORTEX project:
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Introduction and background

* Modelling of the neutron noise includes two basic steps:

* Modelling of the noise source in terms of macroscopic cross-section
perturbations

* Modelling of the neutron noise induced by fluctuations of the macroscopic
cross-section perturbations
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Noise source modelling

e Perturbations can be defined:

* In the time-domain, more or less as they are, with limitations/approximations
due to the mesh used.

* In the frequency-domain, after typically a first-order approximation of the
perturbation, subsequently followed by a Fourier transform +
limitations/approximations due to the mesh used.

»Modelling possibly supplemented by other modelling tools (e.g. fluid-
structure modelling tool)

»Noise source modelling strongly dependent on the choices made by
the user




Noise source modelling

* Different scenarios investigated in CORTEX:

* “Absorber of variable strength”: localized perturbation of which its amplitude
varies in time at a fixed position

* “Vibrating absorber”: lateral movement of a weak absorber

* Axially-travelling perturbations

* Inlet flow rate perturbations

* Core barrel vibrations: several types of vibrations possible

* Fuel assembly vibrations: several possible modes of vibrations




Noise source modelling

Possible axial vibration modes for fuel assemblies:
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Modelling of the induced neutron noise

* Once the noise source is modelled, need to estimate the response of
the neutron flux to the applied perturbation

» Could be done using the neutron transport equation (Boltzmann
equation):
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Modelling of the induced neutron noise

* Different approaches possible:
* Time-domain modelling

Advantages:

= Existing time-domain codes could be used

" Non-linear effects inherently accounted for

" Thermal-hydraulic feedback automatically taken into account

Disadvantages:

" Lengthy calculations

= Challenging to get a highly accurate solution for the noise
= Codes originally not developed for that purpose

" Lack of verification and validation for noise analyses




Modelling of the induced neutron noise

* Different approaches possible:
* Frequency-domain modelling

Time-domain equations transformed into frequency-domain equations
according to the following procedure:

= Splitting between mean values and fluctuations
" Linear theory used because of the smallness of the fluctuations
* Fourier-transform of the balance equations for the dynamical part only




Modelling of the induced neutron noise

* Different approaches possible:
* Frequency-domain modelling

Advantages:

= Codes specifically developed for noise analysis, thus usually fully verified (validated?)
" Highly accurate noise solution

= Usually high flexibility in the modelling

" Very fast calculations

Disadvantages:

* No commercial code available

" Possible linear effects disregarded

* Thermal-hydraulic feedback generally not taken into account (but could be)




Modelling of the induced neutron noise

e Codes used in CORTEX:

Code Domain Non-linear terms  Angular resolution Spatial resolution Approach
name
Time Frequency Not modelled Modelled Diffusion Transport Fine-mesh Coarse-mesh Deterministic Probabilistic
SIMULATE-3K v v v v v
DYN3D ‘/ \/ ‘/ \/ \/
QUABBOX/ v v v v v
CUBBOX
FRREE v v v () v v
FEMFUSSION v v v v v v

APOLLO3® v v v v




Modelling of the induced neutron noise

e Codes used in CORTEX:

Code Domain Non-linear terms  Angular resolution Spatial resolution Approach
name
Time Frequency Not modelled Modelled Diffusion Transport Fine-mesh Coarse-mesh Deterministic Probabilistic
CORE SIM v v v v v
CORE SIM+ v v v v v
Sn-based v v v v v
solver
Extension of v v v v v
MCNP
Extension of v v v v v
TRIPOLI-4®
Equivalence- v v v v v

based method
using MCNP




Modelling of the induced neutron noise

* Example of a travelling perturbation @ |Hz
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Modelling of the induced neutron noise

* Example of comparisons between frequency- and time-domain

approaches:
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Conclusions and outlook

* Modelling the effect of noise sources can be done in many ways:
* Time-domain/frequency-domain
* Diffusion/transport
* Deterministic/probabilistic
* Fine/coarse spatial mesh

* Taking full advantage of noise analysis requires:
* A correct modelling of the noise source
* The estimation of the reactor transfer function
* Its inversion




Conclusions and outlook

* Extensive verification/validation work (still on-going):
* By cross-comparisons of the tools in numerical benchmarks
* Using noise experiments carried out at the AKR-2 and CROCUS reactors
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* Extensive verification/validation work (still on-going):
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