

salome_meca

EDF's open-source simulation platform for structural mechanics

SNETP TS8 February 4, 2021

Introduction

EDF operates facilities with many mechanical components

Source: EDF Energy

Note: Image shows generic EPR reactor layout

Introduction

EDF operates power plants with many mechanical components

In order to ensure safety, EDF must show the structural integrity of buildings and components

→ Under specific conditions, simulation can be used to assess safety

Source: EDF Energy

Simulation in structural mechanics

A wide range of mechanical fields and applications

- □ Civil engineering
- ☐ Fracture / Fatigue
- ☐ Seismic analyses
- □ Soil mechanics
- □ Welding
- □ Fuel assemblies
- □ Rotating Machines
- □.. And many more!

Simulation in structural mechanics

A wide range of mechanical fields and applications

- □ Civil engineering
- ☐ Fracture / Fatigue
- ☐ Seismic analyses
- ☐ Soil mechanics
- □ Welding
- □ Fuel assemblies
- □ Rotating Machines
- □.. And many more!

Every field has specific and different needs: functionalities, ergonomic, performance, etc.

Thus, many simulation software are employed

Drawbacks of such strategy

A wide variety of software must be available

- ☐ Licenses are expensive
- □ Dependent on the software provider for specific applications
- □ Different simulation environments generate compatibility issues
- ☐ Ensuring a 100 years-old archive of the numerical studies may be complicated

Solution: Our own platform!

Simulation platform available for our engineers

Development has a cost — but so do software licenses (and significantly more with HPC capabilities!)

A strategy can be built in order to be:

- □ cost-efficient
- □ User-friendly
- ☐ satisfy all fields of mechanics

Generic Platform

- □ CAD design
- □ Meshing
- □ Visualisation
- ☐ Generic modules

Generic Platform

FEM Solver

Generic Platform

Thus, one is now able to perform a simulation in structural mechanics. Yet:

- □ No interactions between the mechanical solver and the platform
- □ Altough powerful, significant lack of user-friendliness

Generic Platform

AsterStudy GUI

Generic Platform

FEM Solver

AsterStudy GUI

Combining the Generic Platform + FEM solver + GUI allows all end-users to perform their studies in a user-friendly environment

Yet, for specific usage:

- Most engineering units are not specialized in simulations. Their day-to-day tasks include but are not limited to numerical simulation
- ☐ Some studies must be performed several times under different hypothesis.

Additional possibilities!

Custom app

Generic Platform

Additional specs

Benefits of the Custom Apps

- ☐ Give access to numerical simulation to new end-users
- ☐ Can have their own GUI, and post-processes (ASME, RCC/RSE-M, etc.) within the platform
- □ Automatically generate studies from A to Z for specific applications :
 - Mesh Generation
 - Data input
 - Post-process
 - Reports generation
- ☐ Ensure quality of the studies
 - V&V process of the platform used for the custom app
 - Methodologies are embedded within the custom app

Example (fictive)

Parameter fitting of material properties

Workflow is as follows:

- ☐ Generate the experimental data from samples
- ☐ Produce the CAD models of the samples
- ☐ Generate the meshes
- ☐ Create the numerical studies which represent the experimental conditions
- ☐ Implement an optimization algorithm in order to fit the parameters
- □ Post-process using some standards
- □ Write down a report

Example (fictive)

Parameter fitting of material properties

Using a custom app:

- ☐ Generate the experimental data from samples
- ☐ Produce the CAD models of the samples
- ☐ Generate the meshes
- present the ☐ Create the numerical experimental com
- Elements which can be input data data thm in order to fit the □ Implement an parameters
- estandards ☐ Post-prog
- ☐ Write dow

Custom app

salome_meca outside of EDF

Can be used for other application / fields

- □ Everything except the Custom Apps are under GPL/LGPL Licences
- ☐ One can create its own custom Apps
- □ Can be downloaded : <u>www.code-aster.org</u>

EDF is open to discuss partnerships using open source tools

- □ Co-development of new functionalities in our FEM mechanical solver
- □ Benchmarks with other software
- □ Co-development of Custom Apps

Conclusion

EDF develops salome_meca in order to

- ☐ Create a single simulation environment used by all engineering units
- ☐ Ensure the required functionalities are available
- ☐ Optimize dedicated workflows using custom applications.

The platform is open source, thus:

- ☐ One can use it for its own needs
- □ EDF is interested in co-development partnerships

