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Typical cross-section through an oxide scale 

after oxidation of Zry-4 in air at 1000°C: 

1 – initially formed dense oxide ZrO2, 

2 – porous oxide after oxidation of ZrN, 

3 – ZrO2/ZrN mixture, 

4 – -Zr(O). 

Mass gain versus time of oxidation of 

Zircaloy-4 at 800°C in steam-nitrogen mixtures. 
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Overview of bundle air ingress experiments 

280 mm 260 mm 

CODEX AIT-1, AIT-2 (Zry-4) performed 1999 at AEKI/Budapest: 

small bundles with 9 rods 

PARAMETER-SF4 (E110 claddings) performed 2009 at 

LUCH/Podolsk: very high temperatures on reflood initiation with 

following escalation (bundle melting) 

635 mm 430 mm 

QUENCH-10 (Zry-4 claddings) performed 2004 at 

KIT/Karlsruhe: strong pre-oxidised bundle 

QUENCH-16 (Zry-4 claddings) performed 2011 at 

KIT/Karlsruhe: moderate pre-oxidised bundle 
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450 mm: nitrides inside oxide 

layer 

535 mm: 1) porous outer oxide layer (formed 

during preoxidation in oxygen); 2) dense 

oxide layer (formed during air ingress);       3) 

single nitrides at boundary oxide-metal. 

555 mm: similar to 535 mm 

CODEX-AIT1 (9 rods, heated 600 mm, pre-ox. 40 µm): 

cladding structures at hot elevations 

with T (535 mm) ≈ 900°C – 1300 °C during air ingress (570 s)   

Practically total consumption of nitrogen below 500 mm   
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280 mm: single nitrides inside 

“pockets” of upper part of oxide 

layer 

375 mm: nitrides inside upper part 

of oxide layer 

555 mm: few oxidised cladding 

(steam and air starvation) 

CODEX-AIT2 

(9 rods, heated 600 mm, pre-ox. 35 µm): 

cladding structures at hot elevations 

with T (450 mm) ≈ 900°C – 1600 °C during air ingress (570 s)   

280 mm 
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130 mm: intact bundle 260 mm: melt 1200 mm: melt; nitrides dissolved by melt 

oxidised relocated melt 260 mm: melt 
homogeneous ZrO2 : 200 µm; 

no nitrides 

PARAMETER SF-4 test (19 rods, heated 1275 mm, pre-ox 250 µm) 

Temperature transient during air ingress (1476 s): T = 1173-2110 K 
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QUENCH facility 

thermal 

insulation 

ZrO2 fibre 

thickness 

34 mm 

pitch 14.3 

mm 

20 heated rods 

cladding Zry-4 

ø10.75/9.3 mm 

W-heater 

ø6mm 

pellet ZrO2 

ø9.15/6.15mm 

1 unheated rod 

cladding Zry-4 

ø10.75/9.3 mm 

central thermocouple 

pellet ZrO2 

ø9.15/2.5mm 

 

4 removable 

corner rods 

Zry-4 ø6 mm  
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QUENCH-10 test performance 
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Nitride formation under oxygen starvation conditions 

at the elevation 850 mm 

QUENCH-10: Nitride formation on the end of the 

air ingress phase (withdrawn Zry-4 corner rod) 
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QUENCH-10: Axial change of oxide layer structure 
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QUENCH-16 test progression 

1st 

rod 

withdrawn 

2nd 

rod 

withdrawn 

water injection (at 11340 s): 

4l fast injection + 53 g/s 

air injection (at 7300 s) 

0.2 g/s 
superheated steam 

3.4 g/s 

Argon 3 g/s 
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QUENCH-16: Consumption of nitrogen and oxygen 

during air ingress phase (data  of mass spectrometer) 
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250 mm (1070°C): no nitrides 450 mm (1530°C): strong 

corrosion; nitrides 

650 mm (1400°C): moderate 

corrosion; nitrides 

750 mm (1460°C): strong 

corrosion; nitrides 

850 mm (1570°C): strong 

corrosion; nitrides 

950 mm: no nitrides 

QUENCH-16: Layer structures on the end of the air ingress phase (withdrawn corner rod); 

nitride formation between 300 and 900 mm 
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QUENCH-16: Secondary oxidation and melting at elevation 550 mm 

frozen partially oxidised melt 

rod #9 

voids from downwards 

relocated melt 

completely 

oxidised 

Zry grid spacer  

porous outer 

oxide scale 

Zr-nitrides 

secondary 

dense inner oxide 

(grown during quench phase) 
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Test 

Max ZrO2 

before  air 

ingress, 

µm 

Air flow rate, 

g/s/rod 

Initial Tpct 

at air 

injection, K 

Durations of (air 

ingress) 

\(oxygen 

starvation), s 

Tpct at re-

flood/cool-

down, K 

Nitrides 

Hydrogen 

production 

during reflood, g 

CODEX AIT-1 

40 (disso-

lution from 

50) 

3.5/(9+5) 

= 0.25 
1173 570 \ NA 2273 

distributed 

inside ZrO2 

or along α 

cool-down in Ar 

CODEX AIT-2 

20 (steam 

+air) + 15 

(air leak)  

2.5/(9+5) 

= 0.18 
1073 800 \ NA 2173 

localised 

“pockets” 

inside ZrO2 

cool-down in Ar 

PARAMETER 

SF-4 
250 

0.5/(19+12.6) 

= 0.016 
1173 1476 \ NA 2110 

dissolved in 

melt 
86 

QUENCH-10 500 
1/(21+9.6) 

= 0.033 
1190 1800 \ 80 2200 

localised 

“pockets” at 

outer side of 

ZrO2 

5 (1 g re-oxidation 

of nitrides) 

QUENCH-16 135 
0.2/(21+9.6) 

= 0.007 
1000 4035 \ 800 1873 

distributed 

inside ZrO2 

128 (7 g re-

oxidation of 

nitrides + 96 g 

metal oxidation + 

25 g melt 

oxidation) 

Summary of bundle tests 
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OVERVIEW OF THE CODE MATRIX 

 

 For this study, the involved codes are: 

 

 ASTEC V2.1 (IRSN) 

 

 ATHLET-CD (GRS) 

 

 MAAP (EDF) 

 

 MELCOR (PSI) 

 

 SCDAPSim (PSI) 

 

 SOCRAT (IBRAE) 

ERMSAR conference – Paper 2015-038 
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OVERVIEW OF THE CODE MATRIX 

 Code Steam 

Oxidation 

Air 

Oxidation 

Nitriding Nitrides 

Reoxidation 

Cladding 

failure 

criterion 

Oxide layer 

description 

ASTECV2.1 “Best-Fit”: 

Cathcart-

Pawel / 

Transition / 

Prater-

Courtright 

MOZART at 

low 

temperature, 

KIT at high 

temperature 

KIT-

Hollands 

ZrON 

oxidized as 

ZrO2- not 

used in this 

study 

For T ≥ 

2300 K 

and ZrO2 

thickness 

< 300 µm 

 

Dense 

ZrO2 and α-

Zr(O) layers 

ATHLET-CD CathCart-

Prater / 

Courtright 

Steinbrück Hollands None T = 

2300K 

(dox  ≤  

0.25 mm) 

T = 

2500K 

(dox  ≥ 

0.35 mm) 

Porosity 

factor  

1≤  FPor≤ 2  

if ∂ZRN  > 0 

 

MAAP Cathcart-

Urbanic 

NUREG KIT-EDF ZrN oxidized 

as Zr 

For T ≥ 

2500K 

or FZrox ≥ 

0.5 

Only a 

dense ZrO2 

ERMSAR conference – Paper 2015-038 
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OVERVIEW OF THE CODE MATRIX 

 Code Steam 

Oxidation 

Air Oxidation Nitriding Nitrides 

Reoxidation 

Cladding 

failure 

criterion 

Oxide layer 

description 

MELCOR Cathcart-

Urbanic 

Cathcart/Urba

nic and 

Uetsuka and 

Hoffman with 

PSI 

breakaway 

model  

None None For T ≥ 

2400K 

Only a 

dense ZrO2 

SCDAPSim Cathcart-

Urbanic 

Cathcart/Urb

anic and 

Uetsuka and 

Hoffman with 

PSI 

breakaway 

model  

None  None  For T ≥ 

2500K 

and 

FrZrox≥ 

0.6 

 

Only a 

dense ZrO2 

 

SOCRAT Oxygen 

diffusion  

in 

cladding 

3-layer 

system  

Oxygen 

diffusion in 

cladding 3-

layer system, 

enhanced  

None None  For T ≥ 

2300K 

and dox< 

0.0003 m 

 

ZrO2 with 

enhanced 

oxygen 

diffusion 

coefficient 
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VALIDATION AGAINST QUENCH-10 EXPERIMENT 

 

  Thermal behavior of the bundle at the height of 250mm:  

ERMSAR conference – Paper 2015-038 

Steam Air 

Reflood 
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VALIDATION AGAINST QUENCH-10 EXPERIMENT 

 

  Thermal behavior of the bundle at the height of 950mm:  

ERMSAR conference – Paper 2015-038 

Steam Air 

Reflood 
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VALIDATION AGAINST QUENCH-10 EXPERIMENT 

 

  Thermal behavior of the bundle at the height of 1250mm:  

ERMSAR conference – Paper 2015-038 

Steam Air 

Reflood 
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VALIDATION AGAINST QUENCH-10 EXPERIMENT 

 

  Gases behavior  Hydrogen Production: 

 

 

 

 

 

 

 

 

 Hydrogen production is in good agreement for most of the codes with the experiment, for 

both the pre-oxidation phase and the reflood phase, particularly for ATHLET-CD and 

MELCOR.  

ERMSAR conference – Paper 2015-038 

at the end of 

P-ox phase (g) 

at the end of 

air phase (g) 

Total (g) 

Experiment 47 47 53 

ASTEC V2.1 58 58 70 

ATHLET-CD 46.9 46.9 53.8 

MAAP 42 42 44.5 

MELCOR 47 47 56 

SCDAPSim 47.8 47.8 49 

SOCRAT 33.8 33.8 46.2 
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VALIDATION AGAINST QUENCH-10 EXPERIMENT 

 

  Gases behavior  Air: 

 

 

 

 

 

 

 

 

 

 Starvation time and location are well predicted by most of the codes while oxygen 

consumption is scattered. 
ERMSAR conference – Paper 2015-038 

Starvation 

time (s) 

Starvation 

elevation 

(mm) 

Oxygen 

consumption 

(g) 

Nitrogen 

consumption 

(g) 

Experiment 13300 >800 84 8 

ASTEC V2.1 13200 500 73 4 

ATHLET-CD > 13400 >750 57 0.4 

MAAP 13100 >350 164 10.3 

MELCOR 13240 750 63.43 - 

SCDAPSim 13140 750 43.53 - 

SOCRAT 13116 750 52 0 
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VALIDATION AGAINST QUENCH-16 EXPERIMENT 

 

  Thermal behavior of the bundle at the height of 250mm:  

ERMSAR conference – Paper 2015-038 

Steam Air 

Reflood 
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VALIDATION AGAINST QUENCH-16 EXPERIMENT 

 

  Thermal behavior of the bundle at the height of 650mm:  

ERMSAR conference – Paper 2015-038 

Steam Air 

Reflood 
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VALIDATION AGAINST QUENCH-16 EXPERIMENT 

 

  Thermal behavior of the bundle at the height of 1250mm:  

ERMSAR conference – Paper 2015-038 

Steam Air 

Reflood 
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VALIDATION AGAINST QUENCH-16 EXPERIMENT 

 

  Gases behavior  Hydrogen Production: 

 

 

 

 

 

 

 

 

 Hydrogen production is in good agreement for most of the codes with the experiment for 

the pre-oxidation. Final calculated hydrogen production is underestimated as 

temperatures escalation is not caught for the overall bundle. 

ERMSAR conference – Paper 2015-038 

at the end of 

P-ox phase (g) 

at the end of 

air phase (g) 

Total (g) 

Experiment 16 17.3 144 

ASTEC V2.1 21 21 123 

ATHLET-CD 14.9 14.9 53 

MAAP 13.4 17.8 18.1 

MELCOR 14.5 18.5 27.2 

SCDAPSim 14.5 17.8 18.7 

SOCRAT 9.6 9.6 106.3 
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VALIDATION AGAINST QUENCH-16 EXPERIMENT 

 

  Gases behavior  Air: 

 

 

 

 

 

 

 

 

 Starvation time and location are well predicted by most of the codes. Oxygen 

consumption tends to be overestimated by all the codes (in good agreement for ATHLET-

CD and SOCRAT). 
ERMSAR conference – Paper 2015-038 

Starvation 

time (s) 

Starvation 

elevation 

(mm) 

Oxygen 

consumption 

(g) 

Nitrogen 

consumption 

(g) 

Experiment 10500 >350 58 29 

ASTEC V2.1 10000 500 83 40 

ATHLET-CD 10300 ≥ 350 58.8 33.1 

MAAP 9600 >250 82.5 9.3 

MELCOR 9850 750 85.40 - 

SCDAPSim 10220 750 72.96 - 

SOCRAT 10110 750 61 0 
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VALIDATION AGAINST PARAMETER-SF4 

EXPERIMENT 

 

 

 Thermal behavior of the bundle at the height of 200mm:  
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Steam Air 

Reflood 
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VALIDATION AGAINST PARAMETER-SF4 

EXPERIMENT 

 

 

 Thermal behavior of the bundle at the height of 800mm:  
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Steam Air 

Reflood 
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VALIDATION AGAINST PARAMETER-SF4 

EXPERIMENT 

 

 

 Thermal behavior of the bundle at the height of 1200mm:  
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Steam Air 

Reflood 
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VALIDATION AGAINST PARAMETER-SF4 

EXPERIMENT  

 

 

 Gases behavior  Hydrogen Production: 

 

 

 

 

 

 

 Hydrogen production is in good agreement for most of the codes with the experiment for 

the pre-oxidation phase.  

     Final calculated hydrogen production is scattered. 

ERMSAR conference – Paper 2015-038 

at the end of 

P-ox phase (g) 

at the end of 

air phase (g) 

Total (g) 

Experiment 21.8 21.8 ~108 

ATHLET-CD 21.0 21.0 92.6 

SCDAPSim 22.86 22.86 45.06 

SOCRAT 8.9 8.9 170 
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VALIDATION AGAINST PARAMETER-SF4 

EXPERIMENT  

 

 

 Gases behavior  Air: 

 

 

 

 

 

 

 Starvation time and location are well predicted by most of the codes. 

ERMSAR conference – Paper 2015-038 

Starvation 

time (s) 

Starvation 

elevation 

(mm) 

Oxygen 

consumption 

(g) 

Nitrogen 

consumption 

(g) 

Experiment 15648 >500 unknown unknown 

ATHLET-CD 15648 ≥  400 57.3 20.3 

SCDAPSim 15608 500 47.29 - 

SOCRAT 15748 800 28 0 
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CONCLUSIONS AND PERSPECTIVES 

 

  Conclusions: 

 

 From the experimental part , the main underlined points are:  

• The different studied scales showed very complex processes of air on cladding degradation. 

• Main reason = formation of zirconium nitrides due to interaction of nitrogen with α-Zr(O) which 

leads to a very porous and fragile structure at the outer cladding surface. 

• Nitrides can be exothermically re-oxidised in steam, accelerating the cladding degradation. 

 

 From the simulation part, the main underlined points are: 

• Well predicted pre-oxidation phase 

• Underestimation of the air effect 

• Global difficulties to catch temperature escalation during reflood and the associated hydrogen 

production 

ERMSAR conference – Paper 2015-038 
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CONCLUSIONS AND PERSPECTIVES 

 

  Perspectives: 

 From the experimental part and since single effect tests showed strong cladding 

degradation also in steam-nitrogen mixtures, it would be very reasonable to 

perform bundle tests under corresponding conditions. 

 

 From the simulation part, improvements are needed on phenomena such as: 

• Modelling of porous nitride-oxide layer formation during air ingress,  

• Calculation of the penetration of steam through the porous superficial layer accomplished by 

nitrides re-oxidation and intensive cladding oxidation during reflood 

 

 General viewpoint: 

 A strong relationship is present in this scientific community: much collaboration 

between experimental and modelling people, between public research and industrial 

research 

 Proposition of a new QUENCH test, in the frame of SAFEST call for proposal, with an 

air phase composed of a mixed atmosphere (steam + air) instead of pure air (proposed 

by EDF, IBRAE, IRSN, GRS, PSI and LEI) 
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THANK YOU 
 

 

 

 

 

 

 


