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Introduction (1) 

 In-Vessel corium Retention through External Reactor Vessel 

Cooling 

– Design Feature for SA Mitigation 

 AP600 & AP1000 in USA 

 Loviisa in Finland  

 KERENA in Germany, and so on 

–  As a part of SAMG Strategies 

 APR1400 & OPR1000 in Korea 

 Current Operating Plants, and so on 
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Schematic Diagram of IVR-ERVC 
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Introduction (2) 

 IVR-ERVC 

– The strategy of the APR1400 for severe accident mitigation aims at 
retaining molten core in-vessel first and ex-vessel cooling of corium 
second in case the reactor vessel fails, reinforcing the principle of 
defense-in-depth. 

– IVR-ERVC was adopted as one of severe accident management 
strategies. In IVR-ERVC condition, the cavity will be flooded from 
IRWST by the SCP and the BAMP to the hot leg penetration bottom 
level.   
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Introduction (3) 

 To evaluate IVR-ERVC 

– Thermal load 

– Heat removal rate (CHF) 

– Success Criteria 

 CHF > Thermal Load 

 In general, an increase in natural 
circulation coolant mass flow rate in 
cooling channel leads to increase in the 
heat removal rate at the reactor vessel 
wall. 

 To Increase natural circulation flow rate  

– Gap configuration to form streamline flow  

– Optimal coolant inlet/outlet design  

– Steam venting to prevent pressure build-
up in annular gap between reactor vessel 
and insulation 
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    Thermal Loading 
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Introduction (4) 

 Design features of OPR1000 and APR1400 

 

 

 

 

 

 

 To enhance heat removal rate(increase natural circulation flow) 

– APR1400 : Optimal insulation design 

– OPR1000: Not yet 
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Design Parameters OPR1000 APR1400 

Core Thermal Power (MW) 2815 3983 

Fuel(UO2) Mass  (ton) 85.6 120.0 

Mass for Active Core Zircaloy-4 (ton) 23.9 33.6 

Bottom Head Inner Diameter  (m) 4.2 4.7 

Bottom Head Thickness (cm) 15.2 16.5 

Number of ICI Nozzle in the Lower Head 45 61 
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Introduction (5) 

 Objective: 

–  Analysis of two phase natural circulation mass flow rate in the 

annular gap between the outer reactor vessel wall and the 

insulation using the RELAP5/MOD3   

 Contents 

– To analyze the coolant circulation coolant mass flow rate in 

APR1400 & OPR1000 

– To analyze the effects of the coolant injection temperature and 

water level on  the coolant mass flow rate  
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RELAP5 Input Model (1) 

 RELAP5/MOD3 

– This system thermal hydraulic computer code was developed at 
the INL(Idaho National Laboratory) for the USNRC. 

– This 1-D best estimate transient simulation computer code uses 
six equations on mass, momentum, and energy equations. 

– This computer code includes analyses required to support 
rulemaking, licensing audit calculations, evaluations of accident 
mitigation strategies, evaluations of operator guidelines, and 
experiment planning analyses.  

– This computer code can be used for the simulation of a wide 
variety of hydraulic and thermal transients in both nuclear and 
non-nuclear systems involving mixtures of steam, water, non-
condensable, and solute. 
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RELAP5 Input Model (2) 
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RELAP5 Input Model (3) 
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Input Conditions 
OPR1000 

(Assumed) 
APR1400 

Water Inlet Area (m2) 1.765 1.765 

Water Outlet Area (m2) 1.486 1.672 

Steam Outlet Area (m2) 0.372 0.372 

Water Outlet Position from the 

Reactor Vessel Bottom (m) 
5.69 6.14 

Steam Outlet Position from the 

Reactor Vessel Bottom (m) 
8.13 8.60 

Distance Between Insulation and 

Reactor Vessel Bottom (m) 
0.05 0.12 

 Insulation design for natural circulation flow 
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RELAP5 Input Model (4) 

 Annular gap area 

11 

Minimum Gap Area 
Water Inlets

4.50

210.76

42.37

4.50

47.79

56.6 deg

317.17

8.06

3.50

ICI Penetrations

R86.34

3.0 - 6.0

4.50

R99.915

14.51

Shear Key
38.69

Steam Venting Slots

R101.34

8.50

I.D. 42.0

Water Level

36.00

Hot Leg

60 deg

120 deg

60 deg

120 deg

Shear Key

Height (m)

0 1 2 3 4 5 6

A
re

a
 (

m
2
)

0

2

4

6

8

10

12

14

APR1400

OPR1000



ERMSAR 2015, Marseille March 24 – 26, 2015 

 
12 

MAAP4 Results for the APR1400 

(from KHNP)  

Reduced Results  

for the OPR1000 
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RELAP5 Input Model (5) 

 Thermal load 
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RELAP5 Results & Discussion (1) 

 Temporal coolant circulation mass flow rate 

 

 

 

 

 

 

 

 

 

 

– Oscillatory Flow, APR1400 > OPR1000(Annular Gap Area, Thermal Load) 

– Some water circulates through the steam outlet because two phase water 
level increases in the annular gap  

APR1400 OPR1000 
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RELAP5 Results & Discussion (2) 

 Coolant injection temperature effect 

 

 

 

 

 

 

 

 

– An increase in coolant injection temperature leads to an increase 
in the coolant circulation mass flow rate. 
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RELAP5 Results & Discussion (3) 

 Local pressure and averaged void fraction (OPR1000) 

 

 

 

 

 

 

 

 

– Coolant Injection Temp ↑    Bubble Generation ↑   Coolant 
Circulation Mass Flow Rate ↑   
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RELAP5 Results & Discussion (4) 

 Water level effect in the reactor cavity (OPR1000) 

 

 

 

 

 

 

 

– If water level is lower than the outlet, an decrease in water level 

leads to an rapid decrease in the coolant circulation mass flow 

rate. 
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RELAP5 Results & Discussion (5) 

 Local pressure and averaged void fraction (OPR1000) 

 

 

 

 

 

 

 

 

– If water level is lower than water outlet, 

 Water level ↓   Local pressure ↓  Challenging distance in gap to 
flow out ↑  Circulation Mass Flow Rate ↓    
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RELAP5 Results & Discussion (6) 

 Driving mechanism of circulation flow 

– Circulation flow = driving force – pressure loss 

– Driving force = pressure difference in gap and pool 

 To increase driving force (higher void fraction) 

– higher wall heat flux 

– Higher coolant temperature 

– Pressure loss = gap pressure, form & friction loss 

 To decrease pressure loss 

– Lower two-phase level in gap 

– Larger gap size (minimum gap region) 

– Uniform gap (reductions of form loss) 
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Conclusions (1) 

 Natural circulation flow features of APR1400 and OPR1000 

were examined by RELAP5 code. 

– The coolant circulation mass flow rate at high power of the 

APR1400 is higher than that at low power of the OPR1000.  

– The increase of the coolant injection temperature leads to an 

increase in the steam generation rate, which leads to an increase 

in the coolant circulation mass flow rate.  

– The coolant injection temperature is not effective on the local 

pressure, but is effective on the local average void fraction. 

– A decrease in the water level in the reactor cavity leads to a 

decrease in the local pressure at the lower region and an 

increase in the challenging distance in gap, which leads to a 

decrease in the coolant circulation mass flow rate. 
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Conclusions (2) 

 It is concluded from the RELAP5 results that the present 

design of the reactor vessel insulation in the APR1400 and the 

OPR1000 is suitable for the IVR-ERVC.  

 Verification experiments and a more detailed analysis are 

necessary to evaluate the IVR-ERVC in OPR1000.   
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Thank you for your attention! 

Toward the Robust and Resilient Nuclear System for the Highly Improbable Event 


