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• Main findings in MCCI experiments with prototypical 

materials: 

- For LCS concretes: significant gas release and low pool 

viscosity  

 experiments showed a rather isotropic concrete 

ablation 

- For siliceous concretes: low gas flow rate and increased 

viscosity  

  anisotropic trends were experimentally observed: 

lateral ablation is predominant compared to the one 

at the bottom of the pool. 

 

 What is the influence of viscosity and gas release 

on local heat transfer and then on heat flux distribution 

and therefore on concrete ablation? 

corium 

corium 

Isotropic ablation trend 

for LCS concrete 

Anisotropic ablation trend 

for siliceous concrete 
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• List of existing correlations: 

BALI (Bonnet [2000]), Kutateladze-Malenkov (Kutateladze & Malenkov [1984]), Deckwer [1980] (Correlation 

that best reproduces the experimental data according to Tourniaire [2006])  

• Deckwer semi-theoretical model : 

Solving heat equation along the wall in a bubble column leads to the following expression of the heat transfer 

coefficient: 

ℎ ∝
𝜆𝜌𝐶𝑝
𝑡

1/2

 

With t being the contact time between a fluid element and the wall. This time is associated to the fluctuations 

of the micro scale eddies of turbulence. Considering their length and velocity scales according to 

Kolmogorov theory of isotropic turbulence, t writes: 

𝑡 = 𝜌/𝜇𝜀 1/2 

With ε the energy dissipation rate proportional to the injected power by the gas in the pool: 𝜀 = 𝑔. 𝐽𝑔. We then 

obtain: 

ℎ ∝ 𝜆1/2𝜌3/4𝐶𝑝
1/2𝑔1/4𝐽𝑔

1/4µ−1/4 

In a non-dimensional form (with Stanton, Reynolds, Froude and Prandtl numbers), with fitting coefficient 0.1: 

𝑺𝒕 = 𝟎. 𝟏 𝑹𝒆𝑭𝒓𝑷𝒓𝟐
−𝟎.𝟐𝟓
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B. Tourniaire, «A heat transfer correlation based on a surface renewal model for 

molten core concrete interaction study», Nuclear Engineering and Design, vol. 

236, pp. 10-18, 2006 

• Main experiments on two-phase flow heat transfer investigation within a heated 

bubbling pool: 

-  The BALI Ex-Vessel tests (Bonnet [2000]) 

-  The Duignan et al. tests (Duignan et al. [1990]) 

-  The Kutateladze - Malenkov tests (Kutateladze & Malenkov [1984]) 

-  The Kölbel tests (Kölbel [1958]) 

 

 no experiment with gas injected simultaneously through the bottom and the 

lateral walls on representative viscosity and gas velocity ranges, with 

representative geometry and heating  

  the CLARA program, financed by EDF, IRSN, GDF-Suez and CEA, 

 launched in 2007 
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• Plexiglas container of pool dimensions: 200 x 25 x 25 cm 

Objective: Measurement of heat transfer distribution 
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• Plexiglas tray of pool dimensions: 200 x 25 x 25 mm 

• Pool volumetrically heated by electric current 
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• Plexiglas tray of pool dimensions: 200 x 25 x 25 mm 

• Pool volumetrically heated by electrodes 

• Solutions of water with addition of HEC (to vary viscosity) 

Fraction of HEC added to water (% weight) 0 0,75 1,2 2,3 4,1 

Corresponding average viscosity  (mPa.s, at 22°C)   1 9 25 100 1000 
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• Plexiglas tray of pool dimensions: 200 x 25 x 25 mm 

• Pool volumetrically heated by electrodes 

• Solutions of water with addition of HEC (to vary viscosity) 

• Air injected to simulate the concrete gas release through the bottom horizontal wall and 

through the 2 lateral vertical walls 

Fraction of HEC added to water (% weight) 0 0,75 1,2 2,3 4,1 

Corresponding average viscosity  (mPa.s, at 22°C)   1 9 25 100 1000 

Jgh, Jgv (Ncm/s)   0 0.7 2 4 7 
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• Plexiglas tray of pool dimensions: 200 x 25 x 25 mm 

• Pool volumetrically heated by electrodes 

• Solutions of water with addition of HEC (to vary viscosity) 

• Air injected to simulate the concrete gas release through the bottom horizontal walls and 

through the 2 lateral vertical walls 

• Heat exchangers on the bottom horizontal wall (H) and 1 lateral vertical wall (V) to cool the 

pool, ensure an uniform wall temperature and measure the heat transfer coefficients 

Fraction of HEC added to water (% weight) 0 0,75 1,2 2,3 4,1 

Corresponding average viscosity  (mPa.s, at 22°C)   1 9 25 100 1000 

Jgh, Jgv (Ncm/s)   0 0.7 2 4 7 
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• Horizontal heat transfer coefficient (hh) is almost constant along the horizontal wall 

• Vertical heat transfer coefficient (hv) is more important in the half upper part (hv2) of the 

vertical wall than in the lower one (hv1) and the increase of Jgv increases this difference 

• For the same gas velocities conditions, the increase of concentration implies a decrease 

of heat transfer along all the walls 

• The increase of HEC concentration implies a decrease of the hv/hh ratio, regardless of the 

gas injection rate(s) 
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Jgh > Jgv Jgh < Jgv Jgh = Jgv 



INFLUENCE OF GAS VELOCITY 
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• Heat transfer increases with decreasing HEC concentration (viscosity) 

• Heat transfer increases with the increase of the local gas velocity (no clear influence on the heat 

transfer along the opposite walls) 

• The increase of hh with Jgh seems to plateau out (same observation in Journeau & Haquet [2009])  

Jgv 
Jgv 

Jgh 
hh 

Jgv 
Jgv 

Jgh 

hv 

hh=f(Jgh) hh=f(Jgv) 

hv=f(Jgv) hv=f(Jgh) 
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• Strong influence of the fluid viscosity: heat transfer decreases with increasing viscosity 

in a form of a power law 

HORIZONTAL VERTICAL 
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Ostwald fluid: 

 

𝜇 = 𝐾𝛾 𝑛−1 with average shear stress: 𝛾 =
𝑔𝜌𝑗𝑔

𝐾

1
𝑛+1

 

μh=f(Jgh) for horizontal heat transfer, μv=f(jgv) for vertical heat transfer 

(Sánchez Pérez 

et al. [2006]) 
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• The ratio ranges between 0.5 and 2  no important anisotropy observed.  

• The ratio increases whatever the viscosity: heat transfer promoted laterally when 

Jgv/Jgh increases 

• For the 3 lowest viscosities, the ratio is between 1 and 2: heat exchange is slightly 

promoted laterally.  

• For the most viscous fluids, the ratio can be below 1: heat is preferably transferred 

through the bottom wall. 
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COMPARISON TO DECKWER’S CORRELATION 

For small Stanton numbers, which globally corresponds to high viscosities, the Deckwer 

correlation overestimates heat transfer. Several possible explanations: 

• Does not take into account the sources of creation of turbulence (bubble injection) 

• Kolmogorov turbulent dissipation law not suitable for wall non-turbulent viscous flow 

• Validity of this model questionable for very low and very high Pr numbers  

• Possible presence of a gas film wall 

• Model developed for bubble column (no lateral injection) 
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Deckwer ±40% 
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• Proposition of 2 new correlations : 

St=0.1(ReFrPr²)-0.285  for the heat transfer at the bottom wall 

St=0.15(ReFrPr²)-0.296  for the heat transfer at the lateral wall 

• Better agreement but still discrepancies for high ReFrPr² numbers 

• Comparison with literature data  good agreement 
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Experiments with prototypical materials           CLARA 

         LCS concrete → high Jg & low μ                              hv/hh slightly higher than 1 

       Isotropic trend     Slight anisotropic trend 

        Siliceous concrete → low Jg & high μ  hv/hh slightly lower than 1 

                     Anisotropic trend     Heat transfer slightly promoted at the bottom 

Trends in CLARA are different from those observed in prototypical corium pools experiments  

 Convection in a bubbly more or less viscous pool is not the predominant mechanism in MCCI 

  Behavior of interfaces (crusts?) ? 
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Phenomenology 

• Heat flux distribution: homogeneous heat transfer along the bottom wall, more important 

in the upper region of the lateral wall than in the lower one 

• Predominant influence of increasing viscosity on heat transfer with a decrease in the form 

of a power law 

• Much more limited and local influence of the gas velocity on the heat exchange (which 

increases with increasing gas flow-rate) 

• Lateral heat exchange promoted for the lowest viscosities while heat is preferably 

transferred at the bottom for the most viscous fluids 

 

Modelling 

• Insufficient agreement between the CLARA results and Deckwer correlation 

• Proposition of two new correlations showing better agreement with experimental data: 

 St=0.1(ReFrPr²)-0.285   for the heat transfer at the bottom wall 

St=0.15(ReFrPr²)-0.296  for the heat transfer at the lateral wall 
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Comparison with the prototypical materials experiments 

• Exhibition of opposite behaviors between experiments with prototypical materials and the 

CLARA tests showing that heat transferred by convection is not the predominant 

mechanism leading to ablation trends 

 

Possible prospects 

• Further CLARA experiments with velocity measurements or enhanced visualization would 

lead to a better representation of the fluids circulation patterns 

• A better knowledge of phenomena occurring at the interface (crusts) is required 

• Possible improvement of the proposed correlations by taking into account all the involved 

phenomena (sources of turbulence creation, lateral injection, phenomenology in viscous 

fluids, …) 

• Possibility to adapt the CLARA facility to investigate other phenomena: stratification, top 

quenching, focusing effect,… 
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  K (Pa.sn) n-1 

22°C 42°C 
K=aT+b 

22°C 42°C 
n-1=cT+d 

a b c d 

Water 0.001 0.0006 -0.00002 0.00144 0 0 0 0 

HEC 0.75% 0.017 0.008 -0.00045 0.0269 -0.03 -0.01 0.001 -0.052 

HEC 1.2% 0.061 0.03 -0.00155 0.0951 -0.07 -0.06 0.0005 -0.081 

HEC 2.3% 0.58 0.27 -0.0155 0.921 -0.17 -0.12 0.0025 -0.225 

HEC 4.1% 6.2 2.5 -0.185 10.27 -0.32 -0.24 0.004 -0.408 

HEC 8% 28 13 -0.75 44.5 -0.46 -0.36 0.005 -0.57 

Ostwald fluid: 

 

𝜇 = 𝐾𝛾 𝑛−1 with average shear stress: 𝛾 =
𝑔𝜌𝐽𝑔

𝐾

1
𝑛+1

 

μh=f(Jgh) for horizontal heat transfer, μv=f(jgv) for vertical heat transfer. μh and μv don’t vary much. 

(Sánchez Pérez 

et al. [2006]) 

Reactor range 

- The maximum corium density is ρ =8000 kg/m3 

- The maximum corium viscosity is µ=1 Pa.s 

- The maximum superficial gas velocity is Jg=0.1 m/s 

- The maximum corium heat capacity is cp=1200 J/kg/K 

- The minimum corium heat conductivity is k=2 W/m/K 

 

As ReFrPr² can be rewritten ρ.µ.Jg3.cp²/g/k², the maximum value of ReFrPr² on the reactor 

range is then about 3.105. 

Viscosity 


